Skip to main content

Advertisement

Log in

α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Lewy body disorders (LBD), characterized by the deposition of misfolded α-synuclein (α-Syn), are clinically heterogeneous. Although the distribution of α-Syn correlates with the predominant clinical features, the burden of pathology does not fully explain the observed variability in clinical presentation and rate of disease progression. We hypothesized that this heterogeneity might reflect α-Syn molecular diversity, between both patients and different brain regions. Using an ultra-sensitive assay, we evaluated α-Syn seeding in 8 brain regions from 30 LBD patients with different clinical phenotypes and disease durations. Comparing seeding across the clinical phenotypes revealed that hippocampal α-Syn from patients with a cognitive-predominant phenotype had significantly higher seeding capacity than that derived from patients with a motor-predominant phenotype, whose nigral-derived α-Syn in turn had higher seeding capacity than that from cognitive-predominant patients. Interestingly, α-Syn from patients with rapid disease progression (< 3 years to development of advanced disease) had the highest nigral seeding capacity of all the patients included. To validate these findings and explore factors underlying seeding heterogeneity, we performed in vitro toxicity assays, and detailed neuropathological and biochemical examinations. Furthermore, and for the first time, we performed a proteomic-wide profiling of the substantia nigra from 5 high seeder and 5 low seeder patients. The proteomic data suggests a significant disruption in mitochondrial function and lipid metabolism in high seeder cases compared to the low seeders. These observations suggest that distinct molecular populations of α-Syn may contribute to heterogeneity in phenotypes and progression rates in LBD and imply that effective therapeutic strategies might need to be directed at an ensemble of differently misfolded α-Syn species, with the relative contribution of their differing impacts accounting for heterogeneity in the neurodegenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atarashi R, Wilham JM, Christensen L, Hughson AG, Moore RA, Johnson LM et al (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5:211–212. https://doi.org/10.1038/nmeth0308-211

    Article  CAS  PubMed  Google Scholar 

  2. Attems J, Toledo JB, Walker L, Gelpi E, Gentleman S, Halliday G et al (2021) Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol 141:159–172. https://doi.org/10.1007/s00401-020-02255-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110. https://doi.org/10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartz JC (2016) Prion strain diversity. Cold Spring Harb Perspect Med 6:a024349. https://doi.org/10.1101/cshperspect.a024349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendor JT, Logan TP, Edwards RH (2013) Review: The FUNCTION of a-synuclein. Neuron 79:1044–1066. https://doi.org/10.1016/j.neuron.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  6. Bongianni M, Orrù C, Groveman BR, Sacchetto L, Fiorini M, Tonoli G et al (2017) Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 74:155–162. https://doi.org/10.1001/jamaneurol.2016.4614

    Article  PubMed  Google Scholar 

  7. Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575. https://doi.org/10.1038/ncomms3575

    Article  CAS  PubMed  Google Scholar 

  8. Braak H, Del Tredici K, Rüb U, De Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/S0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  9. Candelise N, Schmitz M, Llorens F, Villar-Piqué A, Cramm M, Thom T et al (2019) Seeding variability of different alpha synuclein strains in synucleinopathies. Ann Neurol 85:691–703. https://doi.org/10.1002/ana.25446

    Article  CAS  PubMed  Google Scholar 

  10. Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58:120–129

    Article  CAS  Google Scholar 

  11. Desplats P, Lee H-J, Bae E-J, Patrick C, Rockenstein E, Crews L et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci 106:13010–13015. https://doi.org/10.1073/pnas.0903691106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV et al (2020) Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 26:1256–1263. https://doi.org/10.1038/s41591-020-0938-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaig C, Valldeoriola F, Gelpi E, Ezquerra M, Llufriu S, Buongiorno M et al (2011) Rapidly progressive diffuse Lewy body disease. Mov Disord 26:1316–1323. https://doi.org/10.1002/mds.23506

    Article  PubMed  Google Scholar 

  14. Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B et al (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117. https://doi.org/10.1016/j.cell.2013.05.057

    Article  CAS  PubMed  Google Scholar 

  15. Harding AJ, Halliday GM (2001) Cortical Lewy body pathology in the diagnosis of dementia. Acta Neuropathol 102:355–363. https://doi.org/10.1007/s004010100390

    Article  CAS  PubMed  Google Scholar 

  16. Hebert AS, Thöing C, Riley NM, Kwiecien NW, Shiskova E, Huguet R et al (2018) Improved precursor characterization for data-dependent mass spectrometry. Anal Chem 90:2333–2340. https://doi.org/10.1021/acs.analchem.7b04808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holec SAM, Liu SL, Woerman AL (2022) Consequences of variability in α-synuclein fibril structure on strain biology. Acta Neuropathol 143:311–330. https://doi.org/10.1007/s00401-022-02403-w

    Article  CAS  PubMed  Google Scholar 

  18. Holec SAM, Woerman AL (2020) Evidence of distinct α-synuclein strains underlying disease heterogeneity. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02163-5

    Article  PubMed  Google Scholar 

  19. Ishizawa K, Ksiezak-Reding H, Davies P, Delacourte A, Tiseo P, Yen SH et al (2000) A double-labeling immunohistochemical study of tau exon 10 in Alzheimer’s disease, progressive supranuclear palsy and Pick’s disease. Acta Neuropathol 100:235–244. https://doi.org/10.1007/s004019900177

    Article  CAS  PubMed  Google Scholar 

  20. Jessie K, Hashim OH, Rahim ZHA (2008) Protein precipitation method for salivary proteins and rehydration buffer for two-dimensional electrophoresis. Biotechnology (Faisalabad) 7:686–693. https://doi.org/10.3923/biotech.2008.686.693

    Article  CAS  Google Scholar 

  21. Killinger BA, Melki R, Brundin P, Kordower JH (2019) Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let’s talk about the lipids in the room. NPJ Park Dis 5:23. https://doi.org/10.1038/s41531-019-0095-3

    Article  CAS  Google Scholar 

  22. Kim C, Haldiman T, Kang S, Hromadkova L, Han ZZ, Chen W et al (2022) Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer’s disease. Sci Transl Med 14:1–16. https://doi.org/10.1126/scitranslmed.abg0253

    Article  CAS  Google Scholar 

  23. Klotz S, Fischer P, Hinterberger M, Ricken G, Hönigschnabl S, Gelpi E et al (2021) Multiple system aging-related tau astrogliopathy with complex proteinopathy in an oligosymptomatic octogenarian. Neuropathology 41:72–83. https://doi.org/10.1111/neup.12708

    Article  CAS  PubMed  Google Scholar 

  24. Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW (2021) Neuropathology and molecular diagnosis of synucleinopathies. Mol Neurodegener 16:83. https://doi.org/10.1186/s13024-021-00501-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kovacs GG (2019) Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 72:725–735. https://doi.org/10.1136/jclinpath-2019-205952

    Article  CAS  PubMed  Google Scholar 

  26. Kovacs GG, Wagner U, Dumont B, Pikkarainen M, Osman AA, Streichenberger N et al (2012) An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathol 124:37–50. https://doi.org/10.1007/s00401-012-0964-x

    Article  CAS  PubMed  Google Scholar 

  27. Kraus A, Saijo E, Metrick MA, Newell K, Sigurdson CJ, Zanusso G et al (2019) Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol 137:585–598. https://doi.org/10.1007/s00401-018-1947-3

    Article  PubMed  Google Scholar 

  28. Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC et al (2020) α-Synuclein strains target distinct brain regions and cell types. Nat Neurosci 23:21–31. https://doi.org/10.1038/s41593-019-0541-x

    Article  CAS  PubMed  Google Scholar 

  29. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. https://doi.org/10.1126/science.1227157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manca M, Kraus A (2020) Defining the protein seeds of neurodegeneration using real-time quaking-induced conversion assays. Biomolecules. https://doi.org/10.3390/biom10091233

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manne S, Kondru N, Jin H, Anantharam V, Huang X, Kanthasamy A et al (2020) α-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov Disord 35:268–278. https://doi.org/10.1002/mds.27907

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Valbuena I, Visanji NP, Kim A, Lau HHC, So RWL, Alshimemeri S et al (2022) Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Transl Neurodegener 11:7. https://doi.org/10.1186/s40035-022-00283-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez-Valbuena I, Visanji NP, Olszewska DA, Sousa M, Bhakta P, Vasilevskaya A et al (2022) Combining skin α-synuclein real-time quaking-induced conversion and circulating neurofilament light chain to distinguish multiple system atrophy and Parkinson’s disease. Mov Disord 37:648–650. https://doi.org/10.1002/mds.28912

    Article  CAS  PubMed  Google Scholar 

  34. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies. Neurology 89:88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  35. Metrick MA, do Carmo Ferreira N, Saijo E, Hughson AG, Kraus A, Orrú C, Miller MW, Zanusso G, Ghetti B, Vendruscolo M, Caughey B, (2019) Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons. Proc Natl Acad Sci USA 116:23029–23039. https://doi.org/10.1073/pnas.19093221160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Musteikytė G, Jayaram AK, Xu CK, Vendruscolo M, Krainer G, Knowles TPJ (2021) Interactions of α-synuclein oligomers with lipid membranes. Biochim Biophys Acta Biomembr 1863:183536. https://doi.org/10.1016/j.bbamem.2020.183536

    Article  CAS  PubMed  Google Scholar 

  37. Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ et al (2018) The amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol 77:2–20. https://doi.org/10.1093/jnen/nlx099

    Article  CAS  PubMed  Google Scholar 

  38. Parkkinen L, Kauppinen T, Pirttilä T, Autere JM, Alafuzoff I (2005) α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57:82–91. https://doi.org/10.1002/ana.20321

    Article  CAS  PubMed  Google Scholar 

  39. Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL et al (2018) Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557:558–563. https://doi.org/10.1038/s41586-018-0104-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng C, Trojanowski JQ, Lee VMY (2020) Protein transmission in neurodegenerative disease. Nat Rev Neurol 16:199–212. https://doi.org/10.1038/s41582-020-0333-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease. Nat Rev Dis Prim 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  42. Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A et al (2014) Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362. https://doi.org/10.1002/ana.24066

    Article  CAS  PubMed  Google Scholar 

  43. Reynolds NP, Soragni A, Rabe M, Verdes D, Liverani E, Handschin S et al (2011) Mechanism of membrane interaction and disruption by α-synuclein. J Am Chem Soc 133:19366–19375. https://doi.org/10.1021/ja2029848

    Article  CAS  PubMed  Google Scholar 

  44. Risiglione P, Zinghirino F, Di Rosa MC, Magrì A, Messina A (2021) Alpha-synuclein and mitochondrial dysfunction in Parkinson’s disease: the emerging role of VDAC. Biomolecules 11:718. https://doi.org/10.3390/biom11050718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roberts RF, Wade-Martins R, Alegre-Abarrategui J (2015) Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain 138:1642–1657. https://doi.org/10.1093/brain/awv040

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rossi M, Candelise N, Baiardi S, Capellari S, Giannini G, Orrù CD et al (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol 140:49–62. https://doi.org/10.1007/s00401-020-02160-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Rumund A, Green AJE, Fairfoul G, Esselink RAJ, Bloem BR, Verbeek MM (2019) α-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of parkinsonism. Ann Neurol 85:777–781. https://doi.org/10.1002/ana.25447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Russo MJ, Orru CD, Concha-Marambio L, Giaisi S, Groveman BR, Farris CM et al (2021) High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson’s disease. Acta Neuropathol Commun 9:1–13. https://doi.org/10.1186/s40478-021-01282-8

    Article  CAS  Google Scholar 

  49. Saijo E, Ghetti B, Zanusso G, Oblak A, Furman JL, Diamond MI et al (2017) Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol 133:751–765. https://doi.org/10.1007/s00401-017-1692-z

    Article  CAS  PubMed  Google Scholar 

  50. Sano K, Atarashi R, Satoh K, Ishibashi D, Nakagaki T, Iwasaki Y et al (2018) Prion-like seeding of misfolded α-synuclein in the brains of dementia with lewy body patients in RT-QUIC. Mol Neurobiol 55:3916–3930. https://doi.org/10.1007/s12035-017-0624-1

    Article  CAS  PubMed  Google Scholar 

  51. Schapira AHV (2010) Complex I: Inhibitors, inhibition and neurodegeneration. Exp Neurol 224:331–335. https://doi.org/10.1016/j.expneurol.2010.03.028

    Article  CAS  PubMed  Google Scholar 

  52. Schmitz M, Cramm M, Llorens F, Müller-Cramm D, Collins S, Atarashi R et al (2016) The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 11:2233–2242. https://doi.org/10.1038/nprot.2016.120

    Article  CAS  PubMed  Google Scholar 

  53. Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B et al (2020) Structures of α-synuclein filaments from multiple system atrophy. Nature 585:464–469. https://doi.org/10.1038/s41586-020-2317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X et al (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578:273–277. https://doi.org/10.1038/s41586-020-1984-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A et al (2021) Structure-based classification of tauopathies. Nature 598:359–363. https://doi.org/10.1038/s41586-021-03911-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sokratian A, Ziaee J, Kelly K, Chang A, Bryant N, Wang S et al (2021) Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol 141:547–564. https://doi.org/10.1007/s00401-021-02288-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sorrentino ZA, Goodwin MS, Riffe CJ, Dhillon JKS, Xia Y, Gorion KM et al (2019) Unique α-synuclein pathology within the amygdala in Lewy body dementia: implications for disease initiation and progression. Acta Neuropathol Commun 7:142. https://doi.org/10.1186/s40478-019-0787-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  59. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S et al (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  60. Tang JX, Thompson K, Taylor RW, Oláhová M (2020) Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis, import, and assembly pathways. Int J Mol Sci 21:3820. https://doi.org/10.3390/ijms21113820

    Article  CAS  PubMed Central  Google Scholar 

  61. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R et al (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science (80-) 274:2079–2082. https://doi.org/10.1126/science.274.5295.2079

    Article  CAS  Google Scholar 

  62. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  63. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  64. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226. https://doi.org/10.1038/nbt.2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woerman AL (2021) Strain diversity in neurodegenerative disease: an argument for a personalized medicine approach to diagnosis and treatment. Acta Neuropathol. https://doi.org/10.1007/s00401-021-02311-5

    Article  PubMed  Google Scholar 

  66. Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M et al (2022) Cryo-EM structures of amyloid-β 42 filaments from human brains. Science (80-) 375:167–172. https://doi.org/10.1126/science.abm7285

    Article  CAS  Google Scholar 

  67. Zhang H, Duan C, Yang H (2014) Defective Autophagy in Parkinson’s Disease: Lessons from Genetics. Mol Neurobiol 1:89–104. https://doi.org/10.1007/s12035-014-8787-5

    Article  CAS  Google Scholar 

  68. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors particularly acknowledge the patients and their families for their donation. We would also like to acknowledge Dr. Michael Ford and MS Bioworks for their support with the mass spectrometry. Figure 3a was designed with BioRender.com.

Funding

This study was supported by the Edmond J. Safra Philanthropic Foundation, the Krembil Foundation, the Rossy Foundation, the Maybank Foundation (to G.G.K. and A.E.L.), the Blidner Family Foundation (to N.P.V.), the Canadian Foundation for Innovation (CFI) John R. Evans Leaders Fund (40480) and the Ontario Research Fund for Small Infrastructure Funds (to G.G.K.). E.S. and J.F.-I. were supported by a grant from the Spanish Ministry of Science Innovation and Universities (Ref. PID2019-110356RB-I00/AEI/10. 13039/501100011033). The funding bodies did not take part in design of the study, in collection, analysis, or interpretation of data, or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor G. Kovacs.

Ethics declarations

Conflict of interest

Gabor G. Kovacs is member of the Acta Neuropathologica Editorial Board but was not involved in the editorial handling of this article. GGK holds a shared patent for the 5G4 synuclein antibody.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Valbuena, I., Swinkin, E., Santamaria, E. et al. α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathol 144, 167–185 (2022). https://doi.org/10.1007/s00401-022-02453-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02453-0

Keywords

Navigation