Skip to main content

Advertisement

Log in

Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neurodegeneration of the locus coeruleus (LC) in age-related neurodegenerative diseases such as Alzheimer’s disease (AD) is well documented. However, detailed studies of LC neurodegeneration in the full spectrum of frontotemporal lobar degeneration (FTLD) proteinopathies comparing tauopathies (FTLD-tau) to TDP-43 proteinopathies (FTLD-TDP) are lacking. Here, we tested the hypothesis that there is greater LC neuropathology and neurodegeneration in FTLD-tau compared to FTLD-TDP. We examined 280 patients including FTLD-tau (n = 94), FTLD-TDP (n = 135), and two reference groups: clinical/pathological AD (n = 32) and healthy controls (HC, n = 19). Adjacent sections of pons tissue containing the LC were immunostained for phosphorylated TDP-43 (1D3-p409/410), hyperphosphorylated tau (PHF-1), and tyrosine hydroxylase (TH) to examine neuromelanin-containing noradrenergic neurons. Blinded to clinical and pathologic diagnoses, we semi-quantitatively scored inclusions of tau and TDP-43 both inside LC neuronal somas and in surrounding neuropil. We also digitally measured the percent area occupied of neuromelanin inside of TH-positive LC neurons and in surrounding neuropil to calculate a ratio of extracellular-to-intracellular neuromelanin as an objective composite measure of neurodegeneration. We found that LC tau burden in FTLD-tau was greater than LC TDP-43 burden in FTLD-TDP (z = − 11.38, p < 0.0001). Digital measures of LC neurodegeneration in FTLD-tau were comparable to AD (z = − 1.84, p > 0.05) but greater than FTLD-TDP (z = − 3.85, p < 0.0001) and HC (z = − 4.12, p < 0.0001). Both tau burden and neurodegeneration were consistently elevated in the LC across pathologic and clinical subgroups of FTLD-tau compared to FTLD-TDP subgroups. Moreover, LC tau burden positively correlated with neurodegeneration in the total FTLD group (rho = 0.24, p = 0.001), while TDP-43 burden did not correlate with LC neurodegeneration in FTLD-TDP (rho = − 0.01, p = 0.90). These findings suggest that patterns of disease propagation across all tauopathies include prominent LC tau and neurodegeneration that are relatively distinct from the minimal degenerative changes to the LC in FTLD-TDP and HC. Antemortem detection of LC neurodegeneration and/or function could potentially improve antemortem differentiation of underlying FTLD tauopathies from clinically similar FTLD-TDP proteinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets collected and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Arima K, Akashi T (1990) Involvement of the locus coeruleus in Pick's disease with or without Pick body formation. Acta Neuropathol 79:629–633

    CAS  PubMed  Google Scholar 

  2. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, Boxer AL, Dickson DW, Grossman M, Hallett M et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503

    PubMed  PubMed Central  Google Scholar 

  3. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    CAS  PubMed  Google Scholar 

  4. Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114:419–424

    PubMed  Google Scholar 

  5. Benarroch EE (2009) The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology 73:1699–1704

    PubMed  Google Scholar 

  6. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    PubMed  Google Scholar 

  7. Betts MJ, Cardenas-Blanco A, Kanowski M, Jessen F, Düzel E (2017) In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. NeuroImage 163:150–159

    PubMed  Google Scholar 

  8. Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF et al (2019) Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142:2558–2571

    PubMed  PubMed Central  Google Scholar 

  9. Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80

    CAS  PubMed  Google Scholar 

  10. Bondareff W, Mountjoy CQ, Roth M (1981) Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1:783–784

    CAS  PubMed  Google Scholar 

  11. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Braak H, Del Tredici K (2010) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181

    PubMed  Google Scholar 

  13. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    CAS  PubMed  Google Scholar 

  14. Brettschneider J, Del Tredici K, Irwin DJ, Grossman M, Robinson JL, Toledo JB et al (2014) Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol 127:423–439

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VMY, Hatanpaa KJ et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    PubMed  PubMed Central  Google Scholar 

  17. Clewett DV, Lee T-H, Greening S, Ponzio A, Margalit E, Mather M (2016) Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging 37:117–126

    CAS  PubMed  Google Scholar 

  18. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ehrenberg AJ, Nguy AK, Theofilas P, Dunlop S, Suemoto CK, Di Lorenzo Alho AT et al (2017) Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer's disease. Neuropath Appl Neuro 29:275

    Google Scholar 

  20. Eser RA, Ehrenberg AJ, Petersen C, Dunlop S, Mejia MB, Suemoto CK et al (2018) Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study. J Neuropathol Exp Neurol 77:149–161

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  22. Forno LS, Eng LF, Selkoe DJ (1989) Pick bodies in the locus ceruleus. Acta Neuropathol 79:10–17

    CAS  PubMed  Google Scholar 

  23. German DC, Manaye KF, White CL, Woodward DJ, McIntire DD, Smith WK (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676

    CAS  PubMed  Google Scholar 

  24. German DC, Walker BS, Manaye K, Smith WK, Woodward DJ, North AJ (1988) The human locus coeruleus: computer reconstruction of cellular distribution. J Neurosci 8:1776–1788

    CAS  PubMed  Google Scholar 

  25. Giannini LAA, Xie SX, McMillan CT, Liang M, Williams A, Jester C, Rascovsky K, Wolk DA, Ash S, Lee EB, Trojanowski JQ, Grossman M, Irwin DJ (2019) Divergent patterns of TDP-43 and tau pathologies in primary progressive aphasia. Ann Neurol 85:630–643

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Giannini LAA, Xie SX, Peterson C, Zhou C, Lee EB, Wolk DA (2019) Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration. Front Neurosci 13:168

    Google Scholar 

  27. Gibb WR, Luthert PJ, Marsden CD (1989) Corticobasal degeneration. Brain 112(Pt 5):1171–1192

    PubMed  Google Scholar 

  28. Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM (2018) Detection of alzheimer disease (AD)-specific tau pathology in AD and NonAD tauopathies by immunohistochemistry with novel conformation-selective tau antibodies. J Neuropathol Exp Neurol 77:216–228

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gibbons GS, Kim S-J, Robinson JL, Changolkar L, Irwin DJ, Shaw LM et al (2019) Detection of Alzheimer's disease (AD) specific tau pathology with conformation-selective anti-tau monoclonal antibody in co-morbid frontotemporal lobar degeneration-tau (FTLD-tau). Acta Neuropathol Commun 7:34

    PubMed  PubMed Central  Google Scholar 

  30. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014

    PubMed  PubMed Central  Google Scholar 

  31. Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging 28:327–335

    CAS  PubMed  Google Scholar 

  32. Haglund M, Friberg N, Danielsson EJD, Norrman J, Englund E (2016) A methodological study of locus coeruleus degeneration in dementing disorders. Clin Neuropathol 35:287–294

    PubMed  Google Scholar 

  33. Haglund M, Sjöbeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532

    PubMed  Google Scholar 

  34. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334:345–348

    CAS  PubMed  Google Scholar 

  35. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE et al (2017) Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov Disord 32:853–864

    PubMed  PubMed Central  Google Scholar 

  36. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on aging–alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 8:1–13

    PubMed  PubMed Central  Google Scholar 

  37. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VMY (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J Neurosci 33:1024–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VMY (2015) Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections. Acta Neuropathol 130:349–362

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Irwin DJ, Brettschneider J, McMillan CT, Cooper F, Olm C, Arnold SE et al (2016) Deep clinical and neuropathological phenotyping of Pick disease. Ann Neurol 79:272–287

    CAS  PubMed  Google Scholar 

  40. Irwin DJ, Byrne MD, McMillan CT, Cooper F, Arnold SE, Lee EB et al (2016) Semi-automated digital image analysis of pick's disease and TDP-43 proteinopathy. J Histochem Cytochem 64:54–66

    CAS  PubMed  Google Scholar 

  41. Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM (2014) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491

    PubMed  PubMed Central  Google Scholar 

  42. Irwin DJ, McMillan CT, Xie SX, Rascovsky K, Van Deerlin VM, Coslett HB et al (2018) Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 141:288–301

    PubMed  Google Scholar 

  43. Kaalund SS, Passamonti L, Allinson KSJ, Murley AG, Robbins TW, Spillantini MG et al (2020) Locus coeruleus pathology in progressive supranuclear palsy, and its relation to disease severity. Acta Neuropathol Commun 8:1–11

    Google Scholar 

  44. Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA (2009) In vivo mapping of the human locus coeruleus. NeuroImage 47:1261–1267

    PubMed  PubMed Central  Google Scholar 

  45. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    CAS  PubMed  Google Scholar 

  46. Lee EB, Porta S, Michael Baer G, Xu Y, Suh E, Kwong LK et al (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134:65–78

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu KY, Acosta-Cabronero J, Cardenas-Blanco A, Loane C, Berry AJ, Betts MJ et al (2019) In vivo visualization of age-related differences in the locus coeruleus. Neurobiol Aging 74:101–111

    PubMed  PubMed Central  Google Scholar 

  48. Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2009) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4

    PubMed  PubMed Central  Google Scholar 

  49. Manaye KF, McIntire DD, Mann DM, German DC (1995) Locus coeruleus cell loss in the aging human brain: a non-random process. J Comp Neurol 358:79–87

    CAS  PubMed  Google Scholar 

  50. Mann DM, Yates PO (1974) Lipoprotein pigments–their relationship to ageing in the human nervous system. I. The lipofuscin content of nerve cells. Brain 97:481–488

    CAS  PubMed  Google Scholar 

  51. Marcyniuk B, Mann DM, Yates PO (1986) The topography of cell loss from locus caeruleus in Alzheimer's disease. J Neurol Sci 76:335–345

    CAS  PubMed  Google Scholar 

  52. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    CAS  PubMed  Google Scholar 

  53. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH et al (2020) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269

    Google Scholar 

  54. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2011) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    PubMed  PubMed Central  Google Scholar 

  55. Mouton PR, Pakkenberg B, Gundersen HJ, Price DL (1994) Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat 7:185–190

    CAS  PubMed  Google Scholar 

  56. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine Hydroxylase: the initial step in norepineprhine biosynthesis. J Biol 239:2910–2917

    CAS  Google Scholar 

  57. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    CAS  PubMed  Google Scholar 

  58. Ohm TG, Busch C, Bohl J (1997) Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiol Aging 18:393–399

    CAS  PubMed  Google Scholar 

  59. Priovoulos N, Jacobs HIL, Ivanov D, Uludağ K, Verhey FRJ, Poser BA (2018) High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. NeuroImage 168:427–436

    PubMed  Google Scholar 

  60. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477

    PubMed  PubMed Central  Google Scholar 

  61. Tan RH, Kril JJ, Fatima M, McGeachie A, McCann H, Shepherd C et al (2015) TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain 138:3110–3122

    PubMed  Google Scholar 

  62. Theofilas P, Ehrenberg AJ, Dunlop S, Di Lorenzo Alho AT, Nguy A, Leite REP et al (2017) Locus coeruleus volume and cell population changes during Alzheimer's disease progression: a stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement 13:236–246

    PubMed  Google Scholar 

  63. Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB et al (2018) Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 61:1–12

    PubMed  Google Scholar 

  64. Toledo JB, Van Deerlin VM, Lee EB, Suh E, Baek Y, Robinson JL et al (2013) A platform for discovery: The University of pennsylvania integrated neurodegenerative disease Biobank. Alzheimers Dement 10:477–484.e471

    PubMed  PubMed Central  Google Scholar 

  65. Vijayashankar N, Brody H (1979) A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. J Neuropathol Exp Neurol 38:490–497

    CAS  PubMed  Google Scholar 

  66. Wakamatsu K, Tabuchi K, Ojika M, Zucca FA, Zecca L, Ito S (2015) Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. J Neurochem 135:768–776

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wood EM, Falcone D, Suh E, Irwin DJ, Chen-Plotkin AS, Lee EB (2013) Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurology 70:1411–1417

    PubMed  PubMed Central  Google Scholar 

  68. Xie SX, Baek Y, Grossman M, Arnold SE, Karlawish J, Siderowf A et al (2011) Building an integrated neurodegenerative disease database at an academic health center. Alzheimers Dement 7:e84–e93

    PubMed  PubMed Central  Google Scholar 

  69. Yang Y, Schmitt HP (2001) Frontotemporal dementia: evidence for impairment of ascending serotoninergic but not noradrenergic innervation. Immunocytochemical and quantitative study using a graph method. Acta Neuropathol 101:256–270

    CAS  PubMed  Google Scholar 

  70. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia Nigra in alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    PubMed  Google Scholar 

  71. Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ et al (1988) The neuropathology of aminergic nuclei in Alzheimer's disease. Ann Neurol 24:233–242

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the technical assistance provided by John Robinson, Theresa Schuck, and Alejandra Bahena. We thank Dr. Peter Davies for his generous gift of the PHF-1 antibody and Drs. M. Neumann and E. Kremmer for their generous gift of the 1D3-p409-410 antibody. We also thank the patients and families who participated in the brain donation program, for without their deeply meaningful contribution to research, this study would not be possible.

Funding

This work was supported by grants from NIH grants R01-NS109260, P30-AG10124, P01-AG017586-01, R01-AG054519-02, R01-AG038490, U01-AG052943, and U19-AG062418, Penn Institute on Aging, the Wyncote Foundation, and former P50-NS053488 and P01-AG032953.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the interpretation of the work and approved the submitted manuscript. DTO and DJI contributed to the design, data acquisition, analyses, interpretation, drafting, and revising of the work. CP, RL, KAQC, and GSG contributed to data acquisition and analyses. DAW, VVD, LE, MS, AD, and AS contributed to data acquisition. CTM, JQT, EBL, and MG contributed to the design, data acquisition, analyses, drafting, and revising of the work.

Corresponding author

Correspondence to David J. Irwin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of University of Pennsylvania Internal Review Board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohm, D.T., Peterson, C., Lobrovich, R. et al. Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathol 140, 675–693 (2020). https://doi.org/10.1007/s00401-020-02210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02210-1

Keywords

Navigation