Skip to main content

Advertisement

Log in

Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Extracellular deposition of amyloid β-protein (Aβ) in amyloid plaques and intracellular accumulation of abnormally phosphorylated τ-protein (p-τ) in neurofibrillary tangles (NFTs) represent pathological hallmark lesions of Alzheimer’s disease (AD). Both lesions develop in parallel in the human brain throughout the preclinical and clinical course of AD. Nevertheless, it is not yet clear whether there is a direct link between Aβ and τ pathology or whether other proteins are involved in this process. To address this question, we crossed amyloid precursor protein (APP) transgenic mice overexpressing human APP with the Swedish mutation (670/671 KM → NL) (APP23), human wild-type APP (APP51/16), or a proenkephalin signal peptide linked to human Aβ42 (APP48) with τ-transgenic mice overexpressing human mutant 4-repeat τ-protein with the P301S mutation (TAU58). In 6-month-old APP23xTAU58 and APP51/16xTAU58 mice, soluble Aβ was associated with the aggravation of p-τ pathology propagation into the CA1/subiculum region, whereas 6-month-old TAU58 and APP48xTAU58 mice neither exhibited significant amounts of p-τ pathology in the CA1/subiculum region nor displayed significant levels of soluble Aβ in the forebrain. In APP23xTAU58 and APP51/16xTAU58 mice showing an acceleration of p-τ propagation, Aβ and p-τ were co-immunoprecipitated with cellular prion protein (PrPC). A similar interaction between PrPC, p-τ and Aβ was observed in human AD brains. This association was particularly noticed in 60% of the symptomatic AD cases in our sample, suggesting that PrPC may play a role in the progression of AD pathology. An in vitro pull-down assay confirmed that PrPC is capable of interacting with Aβ and p-τ. Using a proximity ligation assay, we could demonstrate proximity (less than ~ 30–40 nm distance) between PrPC and Aβ and between PrPC and p-τ in APP23xTAU58 mouse brain as well as in human AD brain. Proximity between PrPC and p-τ was also seen in APP51/16xTAU58, APP48xTAU58, and TAU58 mice. Based on these findings, it is tempting to speculate that PrPC is a critical player in the interplay between Aβ and p-τ propagation at least in a large group of AD cases. Preexisting p-τ pathology interacting with PrPC, thereby, appears to be a prerequisite for Aβ to function as a p-τ pathology accelerator via PrPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abramowski D, Rabe S, Rijal Upadhaya A, Reichwald J, Danner S, Staab D et al (2012) Transgenic expression of intraneuronal Abeta42 but not Abeta40 leads to cellular Abeta lesions, degeneration and functional impairment without typical Alzheimer’s disease pathology. J Neurosci 32:1273–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer A (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Allg Zschr Psych 64:146–148

    Google Scholar 

  3. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    Article  CAS  PubMed  Google Scholar 

  4. Attems J, Thomas A, Jellinger K (2012) Correlations between cortical and subcortical tau pathology. Neuropathol Appl Neurobiol 38:582–590

    Article  CAS  PubMed  Google Scholar 

  5. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E et al (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107:2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients. Neurosci Lett 162:179–182

    Article  CAS  PubMed  Google Scholar 

  7. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  PubMed Central  Google Scholar 

  8. Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216

    Article  CAS  PubMed  Google Scholar 

  9. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  10. Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595

    Article  CAS  PubMed  Google Scholar 

  11. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181

    Article  PubMed  Google Scholar 

  12. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathological process in Alzheimer’s disease: age categories 1 year to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  CAS  PubMed  Google Scholar 

  13. Brody AH, Strittmatter SM (2018) Synaptotoxic signaling by amyloid beta oligomers in Alzheimer’s disease through prion protein and mGluR5. Adv Pharmacol 82:293–323

    Article  PubMed  CAS  Google Scholar 

  14. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  CAS  PubMed  Google Scholar 

  15. Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stiller B et al (2018) Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 17:e12692

    Article  CAS  Google Scholar 

  16. Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, de Strooper B et al (2015) Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep 11:1176–1183

    Article  CAS  PubMed  Google Scholar 

  17. Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J et al (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2:306–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen RJ, Chang WW, Lin YC, Cheng PL, Chen YR (2013) Alzheimer’s amyloid-beta oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway. ACS Chem Neurosci 4:1287–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-beta oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64:S567–S610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cox TO, Gunther EC, Brody AH, Chiasseu MT, Stoner A, Smith LM et al (2019) Anti-PrP(C) antibody rescues cognition and synapses in transgenic alzheimer mice. Ann Clin Transl Neurol 6:554–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Mario A, Castellani A, Peggion C, Massimino ML, Lim D, Hill AF et al (2015) The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci 9:416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Esiri MM, Carter J, Ironside JW (2000) Prion protein immunoreactivity in brain samples from an unselected autopsy population: findings in 200 consecutive cases. Neuropathol Appl Neurobiol 26:273–284

    Article  CAS  PubMed  Google Scholar 

  24. Falker C, Hartmann A, Guett I, Dohler F, Altmeppen H, Betzel C et al (2016) Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. J Neurochem 137:88–100

    Article  CAS  PubMed  Google Scholar 

  25. Ferreira DG, Temido-Ferreira M, Vicente Miranda H, Batalha VL, Coelho JE, Szego EM et al (2017) alpha-synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20:1569–1579

    Article  CAS  PubMed  Google Scholar 

  26. Ferrer I, Blanco R, Carmona M, Puig B, Ribera R, Rey MJ et al (2001) Prion protein expression in senile plaques in Alzheimer’s disease. Acta Neuropathol 101:49–56

    Article  CAS  PubMed  Google Scholar 

  27. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  PubMed  Google Scholar 

  28. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527

    Article  CAS  PubMed  Google Scholar 

  29. Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA et al (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30:6367–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    Article  CAS  PubMed  Google Scholar 

  31. Griffiths HH, Whitehouse IJ, Hooper NM (2012) Regulation of amyloid-beta production by the prion protein. Prion 6:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grinberg LT, Rub U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416

    Article  CAS  PubMed  Google Scholar 

  33. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    Article  CAS  PubMed  Google Scholar 

  34. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gunther EC, Smith LM, Kostylev MA, Cox TO, Kaufman AC, Lee S et al (2019) Rescue of transgenic Alzheimer’s pathophysiology by polymeric cellular prion protein antagonists. Cell Rep 26(145–158):e8

    Google Scholar 

  36. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  CAS  PubMed  Google Scholar 

  37. Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J et al (2007) Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc Natl Acad Sci USA 104:19232–19237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L et al (2018) Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38

    Article  CAS  PubMed  Google Scholar 

  39. Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD et al (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7:954–960

    Article  CAS  PubMed  Google Scholar 

  40. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  CAS  PubMed  Google Scholar 

  41. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  CAS  PubMed  Google Scholar 

  42. Hu NW, Corbett GT, Moore S, Klyubin I, O’Malley TT, Walsh DM et al (2018) Extracellular forms of Abeta and tau from iPSC models of Alzheimer’s disease disrupt synaptic plasticity. Cell Rep 23:1932–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    Article  CAS  PubMed  Google Scholar 

  44. Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, Trojanowski JQ et al (2010) A{beta} accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177:1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National institute on aging—Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ishizawa K, Komori T, Shimazu T, Yamamoto T, Kitamoto T, Shimazu K et al (2002) Hyperphosphorylated tau deposition parallels prion protein burden in a case of Gerstmann–Straussler–Scheinker syndrome P102L mutation complicated with dementia. Acta Neuropathol 104:342–350

    Article  PubMed  Google Scholar 

  47. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    Article  CAS  PubMed  Google Scholar 

  48. Jicha GA, Lane E, Vincent I, Otvos L Jr, Hoffmann R, Davies P (1997) A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer’s disease. J Neurochem 69:2087–2095

    Article  CAS  PubMed  Google Scholar 

  49. Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  51. Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA et al (2012) The complex PrP(c)–Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer’s disease. J Neurosci 32:16857-71a

    PubMed  Google Scholar 

  52. Lau DH, Hogseth M, Phillips EC, O’Neill MJ, Pooler AM, Noble W et al (2016) Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol Commun 4:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  55. Lewis V, Whitehouse IJ, Baybutt H, Manson JC, Collins SJ, Hooper NM (2012) Cellular prion protein expression is not regulated by the Alzheimer’s amyloid precursor protein intracellular domain. PLoS One 7:e31754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li C, Gotz J (2018) Pyk2 is a novel tau tyrosine kinase that is regulated by the tyrosine kinase fyn. J Alzheimers Dis 64:205–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R et al (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM et al (2010) The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133:1328–1341

    Article  PubMed  PubMed Central  Google Scholar 

  60. McMillan P, Korvatska E, Poorkaj P, Evstafjeva Z, Robinson L, Greenup L et al (2008) Tau isoform regulation is region- and cell-specific in mouse brain. J Comp Neurol 511:788–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  62. Mondragon-Rodriguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N et al (2012) Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem 287:32040–32053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nisbet RM, Polanco JC, Ittner LM, Gotz J (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129:207–220

    Article  CAS  PubMed  Google Scholar 

  64. Nygaard HB, van Dyck CH, Strittmatter SM (2014) Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res Ther 6:8

    Article  PubMed  PubMed Central  Google Scholar 

  65. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    Article  CAS  PubMed  Google Scholar 

  66. Ondrejcak T, Hu NW, Qi Y, Klyubin I, Corbett GT, Fraser G et al (2019) Soluble tau aggregates inhibit synaptic long-term depression and amyloid beta-facilitated LTD in vivo. Neurobiol Dis 127:582–590

    Article  CAS  PubMed  Google Scholar 

  67. Ondrejcak T, Klyubin I, Corbett GT, Fraser G, Hong W, Mably AJ et al (2018) Cellular prion protein mediates the disruption of hippocampal synaptic plasticity by soluble tau in vivo. J Neurosci 38:10595–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ordonez-Gutierrez L, Torres JM, Gavin R, Anton M, Arroba-Espinosa AI, Espinosa JC et al (2013) Cellular prion protein modulates beta-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging 34:2793–2804

    Article  CAS  PubMed  Google Scholar 

  69. Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39:669–673

    Article  CAS  PubMed  Google Scholar 

  70. Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC et al (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci USA 104:11062–11067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peters PJ, Mironov A Jr, Peretz D, van Donselaar E, Leclerc E, Erpel S et al (2003) Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162:703–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rezaie P, Pontikis CC, Hudson L, Cairns NJ, Lantos PL (2005) Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer’s disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study. J Histochem Cytochem 53:929–940

    Article  CAS  PubMed  Google Scholar 

  73. Rijal Upadhaya A, Capetillo-Zarate E, Kosterin I, Abramowski D, Kumar S, Yamaguchi H et al (2012) Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice. Neurobiol Aging 33:2641–2660

    Article  CAS  PubMed  Google Scholar 

  74. Rijal Upadhaya A, Kosterin I, Kumar S, Von Arnim C, Yamaguchi H, Fändrich M et al (2014) Biochemical stages of amyloid β-peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically-preclinical Alzheimer’s disease. Brain 137:887–903

    Article  PubMed  Google Scholar 

  75. Rijal Upadhaya A, Lungrin I, Yamaguchi H, Fändrich M, Thal DR (2012) High-molecular weight Aβ-oligomers and protofibrils are the predominant Aβ-species in the native soluble protein fraction of the AD brain. J Cell Mol Med 16:287–295

    Article  CAS  Google Scholar 

  76. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  CAS  PubMed  Google Scholar 

  77. Salazar SV, Cox TO, Lee S, Brody AH, Chyung AS, Haas LT et al (2019) Alzheimer’s disease risk factor Pyk2 mediates amyloid-beta-induced synaptic dysfunction and loss. J Neurosci 39:758–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salazar SV, Gallardo C, Kaufman AC, Herber CS, Haas LT, Robinson S et al (2017) Conditional deletion of Prnp rescues behavioral and synaptic deficits after disease onset in transgenic Alzheimer’s disease. J Neurosci 37:9207–9221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139:1539–1550

    Article  PubMed  Google Scholar 

  80. Senthivinayagam S, McIntosh AL, Moon KC, Atshaves BP (2013) Plin2 inhibits cellular glucose uptake through interactions with SNAP23, a SNARE complex protein. PLoS One 8:e73696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sepulcre J, Grothe MJ, d’Oleire Uquillas F, Ortiz-Teran L, Diez I, Yang HS et al (2018) Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 24:1910–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith LM, Zhu R, Strittmatter SM (2018) Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer’s model. Neuropharmacology 130:54–61

    Article  CAS  PubMed  Google Scholar 

  83. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  CAS  Google Scholar 

  84. Spires-Jones TL, Attems J, Thal DR (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134:187–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takahashi RH, Tobiume M, Sato Y, Sata T, Gouras GK, Takahashi H (2011) Accumulation of cellular prion protein within dystrophic neurites of amyloid plaques in the Alzheimer’s disease brain. Neuropathology 31:208–214

    Article  PubMed  Google Scholar 

  87. Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowl Environ 2006:re1

    Article  Google Scholar 

  88. Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:282–293

    Article  PubMed  Google Scholar 

  89. Thal DR, Holzer M, Rüb U, Waldmann G, Gunzel S, Zedlick D et al (2000) Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol 163:98–110

    Article  CAS  PubMed  Google Scholar 

  90. Thal DR, Larionov S, Abramowski D, Wiederhold KH, Van Dooren T, Yamaguchi H et al (2007) Occurrence and co-localization of amyloid beta-protein and apolipoprotein E in perivascular drainage channels of wild-type and APP-transgenic mice. Neurobiol Aging 28:1221–1230

    Article  CAS  PubMed  Google Scholar 

  91. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  92. Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K et al (2000) Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    Article  CAS  PubMed  Google Scholar 

  93. Tousseyn T, Bajsarowicz K, Sanchez H, Gheyara A, Oehler A, Geschwind M et al (2015) Prion disease induces Alzheimer disease-like neuropathologic changes. J Neuropathol Exp Neurol 74:873–888

    Article  CAS  PubMed  Google Scholar 

  94. Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A et al (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15:1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK et al (2015) Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 41:906–925

    Article  PubMed  CAS  Google Scholar 

  96. Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M et al (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52

    Article  CAS  PubMed  Google Scholar 

  97. Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A et al (2016) Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol 131:549–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Velayos JL, Irujo A, Cuadrado-Tejedor M, Paternain B, Moleres FJ, Ferrer V (2009) The cellular prion protein and its role in Alzheimer disease. Prion 3:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Vanden Dries V et al (2019) Amyloid-beta pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol 137:397–412

    Article  CAS  PubMed  Google Scholar 

  100. Vergara C, Ordonez-Gutierrez L, Wandosell F, Ferrer I, del Rio JA, Gavin R (2015) Role of PrP(C) expression in tau protein levels and phosphorylation in Alzheimer’s disease evolution. Mol Neurobiol 51:1206–1220

    Article  CAS  PubMed  Google Scholar 

  101. Vincent B, Sunyach C, Orzechowski HD, St George-Hyslop P, Checler F (2009) p53-Dependent transcriptional control of cellular prion by presenilins. J Neurosci 29:6752–6760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Voigtlander T, Kloppel S, Birner P, Jarius C, Flicker H, Verghese-Nikolakaki S et al (2001) Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol 101:417–423

    Article  CAS  PubMed  Google Scholar 

  103. Wang XF, Dong CF, Zhang J, Wan YZ, Li F, Huang YX et al (2008) Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol Cell Biochem 310:49–55

    Article  CAS  PubMed  Google Scholar 

  104. Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T et al (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of beta-amyloid in human brain samples. Acta Neuropathol 125:549–564

    Article  CAS  PubMed  Google Scholar 

  105. Watts JC, Bourkas MEC, Arshad H (2018) The function of the cellular prion protein in health and disease. Acta Neuropathol 135:159–178

    Article  CAS  PubMed  Google Scholar 

  106. Whitehouse IJ, Jackson C, Turner AJ, Hooper NM (2010) Prion protein is reduced in aging and in sporadic but not in familial Alzheimer’s disease. J Alzheimers Dis 22:1023–1031

    Article  CAS  PubMed  Google Scholar 

  107. Whitehouse IJ, Miners JS, Glennon EB, Kehoe PG, Love S, Kellett KA et al (2013) Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-beta levels and Braak stage. PLoS One 8:e59554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Peter Davies, Department of Pathology, Albert Einstein College of Medicine, USA for the gift of the PHF1 and TG3 antibodies and Dr. Marcus Fändrich, Institute of Pharmaceutical Biotechnology, Center for Biomedical Research, University of Ulm, Germany for the gift of B10AP antibody fragments. The administrative and technical help of Mrs. Alicja Ronisz is gratefully acknowledged.

Funding

Alzheimer Forschung Initiative (AFI) #10810 (DRT); Fonds Wetenschappelijk Onderzoek (FWO) G0F8516N (DRT, RV); Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (IWT 135043) (RV, DRT).

Author information

Authors and Affiliations

Authors

Contributions

Study design: DRT and MS; biochemistry: SAH, LAG, ARU, PLB, VU, KB, RF, CG, and MW; histology: SAH, ARU, MJK, SO, LAG, and DRT; animal experiments: JR, SR, and MS; neuropathology: DRT and TT; clinical neurology: RV and CAFA. Statistical analysis: DRT, LAG, and SAH. Data interpretation: DRT, LAG, and SAH; manuscript preparation: SAH, LAG, and DRT; critical manuscript review: ARU, KB, MJK, SO, PLB, VU, JR, SR, RV, CAFA, TT, RF, CG, MW, and MS.

Corresponding author

Correspondence to Dietmar Rudolf Thal.

Ethics declarations

Conflict of interest

DRT received consultant honorary from GE-Healthcare (UK), and Covance Laboratories (UK), speaker honorary from Novartis Pharma AG (Switzerland), travel reimbursement from GE-Healthcare (UK), and UCB (Belgium), and collaborated with Novartis Pharma AG (Switzerland), Probiodrug (Germany), GE-Healthcare (UK), and Janssen Pharmaceutical Companies (Belgium). JR and MS were employees of Novartis Pharma Basel and SR is employee of Novartis Pharma Basel (Switzerland). CAFvA received honoraria from serving on the scientific advisory board of Nutricia GmbH (2014), Roche (2018) and Honkong University Research Council (2014) and has received funding for travel and speaker honoraria from Nutricia GmbH (2014–2015), Lilly Deutschland GmbH (2013–2016), Desitin Arzneimittel GmbH (2014), Biogen (2016–2018), Roche (2017–2018), and Dr. Willmar Schwabe GmbH&Co. KG (2014–2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, L.A., Hipp, S.A., Rijal Upadhaya, A. et al. Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol 138, 913–941 (2019). https://doi.org/10.1007/s00401-019-02053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-02053-5

Keywords

Navigation