Skip to main content

Advertisement

Log in

Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi–Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn J, Xia T, Konno H, Konno K, Ruiz P, Barber GN (2014) Inflammation-driven carcinogenesis is mediated through STING. Nat Commun 5:5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aicardi J, Goutières F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 15:49–54

    Article  CAS  PubMed  Google Scholar 

  3. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848

    Article  CAS  PubMed  Google Scholar 

  4. Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G et al (2009) Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet 41:1058–1060

    Article  CAS  PubMed  Google Scholar 

  5. Bainbridge MN, Armstrong GN, Gramatges MM, Bertuch AA, Jhangiani SN, Doddapaneni H et al (2014) Germline mutations in shelterin complex genes are associated with familial glioma. J Natl Cancer Inst 107:384

    PubMed  Google Scholar 

  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  7. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T et al (1999) Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 835:46–61

    Article  CAS  PubMed  Google Scholar 

  9. Capper D, Weissert S, Balss J, Habel A, Meyer J, Jäger D et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborty S, Li L, Puliyappadamba VT, Guo G, Hatanpaa KJ, Mickey B et al (2014) Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Nat Commun 5:5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L et al (2016) Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 60:64–87

    Article  CAS  PubMed  Google Scholar 

  12. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A et al (2016) Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 20533:493–498

    Article  Google Scholar 

  13. Classen CF, Riehmer V, Landwehr C, Kosfeld A, Heilmann S, Scholz C et al (2013) Dissecting the genotype in syndromic intellectual disability using whole exome sequencing in addition to genome-wide copy number analysis. Hum Genet 132:825–841

    Article  CAS  PubMed  Google Scholar 

  14. Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT et al (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL et al (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312

    Article  PubMed  Google Scholar 

  16. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M et al (2006) Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet 38:917–920

    Article  CAS  PubMed  Google Scholar 

  17. Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E et al (2006) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat Genet 38:910–916

    Article  CAS  PubMed  Google Scholar 

  18. Crow YJ, Manel N (2015) Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 15:429–440

    Article  CAS  PubMed  Google Scholar 

  19. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N · log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  20. Felsberg J, Rapp M, Loeser S, Fimmers R, Stummer W, Goeppert M et al (2009) Prognostic significance of molecular markers and extent of resection in primary glioblastoma patients. Clin Cancer Res 15:6683–6693

    Article  CAS  PubMed  Google Scholar 

  21. Felsberg J, Wolter M, Seul H, Friedensdorf B, Göppert M, Sabel MC et al (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119:501–507

    Article  CAS  PubMed  Google Scholar 

  22. Goobie GC, Bernatsky S, Ramsey-Goldman R, Clarke AE (2015) Malignancies in systemic lupus erythematosus: a 2015 update. Curr Opin Rheumatol 27:454–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Günther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M, Wolf C et al (2015) Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 125:413–424

    Article  PubMed  Google Scholar 

  24. Ha SC, Choi J, Hwang HY, Rich A, Kim YG, Kim KK (2009) The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1). Nucleic Acids Res 37:629–637

    Article  CAS  PubMed  Google Scholar 

  25. Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, Mackerell AD Jr (2012) Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J Chem Theory Comput 8:348–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  27. Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  CAS  PubMed  Google Scholar 

  28. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS et al (1998) The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 26:3486–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A (2012) Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J Exp Med 209:1419–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hofer MJ, Campbell IL (2013) Type I interferon in neurological disease-the devil from within. Cytokine Growth Factor Rev 24:257–267

    Article  CAS  PubMed  Google Scholar 

  32. Hogg M, Paro S, Keegan LP, O’Connell MA (2011) RNA editing by mammalian ADARs. Adv Genet 73:87–120

    CAS  PubMed  Google Scholar 

  33. Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD et al (1997) The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 272:2927–2935

    Article  CAS  PubMed  Google Scholar 

  34. Hwang T, Park CK, Leung AK, Gao Y, Hyde TM, Kleinman JE et al (2016) Dynamic regulation of RNA editing in human brain development and disease. Nat Neurosci 19:1093–1099

    Article  CAS  PubMed  Google Scholar 

  35. Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer TM, Hansen HM et al (2012) A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 44:1122–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johansson G, Andersson U, Melin B (2016) Recent developments in brain tumor predisposing syndromes. Acta Oncol 55:401–411

    Article  CAS  PubMed  Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  38. La Piana R, Uggetti C, Roncarolo F, Vanderver A, Olivieri I, Tonduti D et al (2016) Neuroradiologic patterns and novel imaging findings in Aicardi-Goutières syndrome. Neurology 86:28–35

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Louis DN, von Deimling A, Cavenee WK (2016) Diffuse astrocytic and oligodendroglial tumours—Introduction. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system (revised, 4th edn. International Agency for Research on Cancer, Lyon, pp 16–17

    Google Scholar 

  41. Lynch HT, Kosoko-Lasaki O, Leslie SW, Rendell M, Shaw T, Snyder C et al (2016) Screening for familial and hereditary prostate cancer. Int J Cancer 138:2579–2591

    Article  CAS  PubMed  Google Scholar 

  42. Mackenzie KJ, Carroll P, Lettice L, Tamauskaite Z, Reddy K, Dix F et al (2016) Ribonuclease H2 mutations induce a cGAS/STING dependent innate immune response. EMBO J 35:831–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Malmer B, Grönberg H, Bergenheim AT, Lenner P, Henriksson R (1999) Familial aggregation of astrocytoma in northern Sweden: an epidemiological cohort study. Int J Cancer 81:366–370

    Article  CAS  PubMed  Google Scholar 

  44. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McFarland BC, Ma JY, Langford CP, Gillespie GY, Yu H, Zheng Y et al (2011) Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 10:2384–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michelson N, Rincon-Torroella J, Quiñones-Hinojosa A, Greenfield JP (2016) Exploring the role of inflammation in the malignant transformation of low-grade gliomas. J Neuroimmunol 297:132–140

    Article  CAS  PubMed  Google Scholar 

  47. Ng SK, Weissbach R, Ronson GE, Scadden AD (2013) Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res 41:9786–9799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundström EB, Burgers PM et al (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci USA 107:4949–4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Connell MA, Mannion NM, Keegan LP (2015) The Epitranscriptome and Innate Immunity. PLoS Genet 11:e1005687

    Article  PubMed  PubMed Central  Google Scholar 

  50. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S et al (2007) Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17:1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Permuth JB, Reid B, Earp M, Chen YA, Monteiro AN, Chen Z et al (2016) Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget 7:72381–72394

    PubMed  PubMed Central  Google Scholar 

  52. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K, Ward JM et al (2016) RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J Exp Med 213:329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reifenberger G, Weber RG, Riehmer V, Kaulich K, Willscher E, Wirth H et al (2014) Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptome-wide profiling. Int J Cancer 135:1822–1831

    Article  CAS  PubMed  Google Scholar 

  55. Reijns MA, Jackson AP (2014) Ribonuclease H2 in health and disease. Biochem Soc Trans 42:717–725

    Article  CAS  PubMed  Google Scholar 

  56. Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA et al (2012) Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149:1008–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rice G, Patrick T, Parmar R, Taylor CF, Aeby A, Aicardi J et al (2007) Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am J Hum Genet 81:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM et al (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rice GI, del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M et al (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rice T, Zheng S, Decker PA, Walsh KM, Bracci P, Xiao Y et al (2013) Inherited variant on chromosome 11q23 increases susceptibility to IDH-mutated but not IDH-normal gliomas regardless of grade or histology. Neuro Oncol 15:535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takanohashi A, Prust AM, Wang J, Gordish-Dressman H, Bloom M, Rice GI et al (2013) Elevation of proinflammatory cytokines in patients with Aicardi-Goutières syndrome. Neurology 80:997–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van Heteren JT, Rozenberg F, Aronica E, Troost D, Lebon P, Kuijpers TW (2008) Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi-Goutières syndrome. Glia 56:568–578

    Article  PubMed  Google Scholar 

  64. Wang Q, Li L, Wang X, Liu H, Yao X (2014) Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZα(ADAR1)) and various Z-DNAs from molecular dynamics simulation. J Mol Model 20:2500

    Article  PubMed  Google Scholar 

  65. Weller M, Weber RG, Willscher E, Riehmer V, Hentschel B, Kreuz M et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129:679–693

    Article  CAS  PubMed  Google Scholar 

  66. Zhang L, Yang CS, Varelas X, Monti S (2016) Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci Rep 6:23226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients and their families for participating in this study, and all colleagues, patients, and families supporting the German Glioma Network. We acknowledge Andrew P. Jackson, Edinburgh, UK for helpful discussions, Vanessa Dewor and Wiebke Schulze, Hannover, Germany for excellent technical assistance, and Alma Osmanovic, Hannover, Germany for performing the skin biopsy on patient II.2 of family 2. pCMV-HA-ADAR wild-type constructs and the pIRESneo vector were kindly provided by Yanick Crow, Manchester, UK and Paris, France, and Matthias Dobbelstein, Göttingen, Germany, respectively.

Author information

Authors and Affiliations

Authors

Contributions

UB, FB, MAMR, MP, and RGW designed research; UB, FB, HM, JW, AC, NE, AE, MP, and CH performed research; BH, MaW, GS, TP, BH, JKK, AS, PR, AD, CAD, IES, OWH, AE, UL, GR, MiW, MAMR, BW, and CH contributed materials, patient/tumor data and expertise; UB, FB, JW, MP, and RGW analyzed data and made figures; UB, FB, MAMR, MP, and RGW wrote the manuscript; all authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Ruthild G. Weber.

Ethics declarations

Statement of human rights

The study was approved by the appropriate institutional research ethics committees. All procedures were in accordance with their ethical standards and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This work was supported by the German Cancer Aid (Deutsche Krebshilfe e.V.; Grant No. 70-3163-Wi 3).

Conflict of interest

GR has received research grants from Roche and Merck (EMD, Darmstadt), as well as honoraria for lectures or advisory boards from Amgen, Celldex, and Medac. JKK is a consultant to Medtronic and Boston Scientific, and received fees for speaking from St. Jude Medical/AbbVie. All other authors declare that they have no conflict of interest.

Additional information

Bettina Hentschel, Manfred Westphal, Gabriele Schackert, Torsten Pietsch, Guido Reifenberger, and Michael Weller represent the German Glioma Network.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, U., Brand, F., Martens, H. et al. Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis. Acta Neuropathol 134, 905–922 (2017). https://doi.org/10.1007/s00401-017-1774-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1774-y

Keywords

Navigation