Skip to main content

Advertisement

Log in

The dorsal root ganglion in Friedreich’s ataxia

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Atrophy of dorsal root ganglia (DRG) and thinning of dorsal roots (DR) are hallmarks of Friedreich’s ataxia (FRDA). Many previous authors also emphasized the selective vulnerability of larger neurons in DRG and thicker myelinated DR axons. This report is based on a systematic reexamination of DRG, DR and ventral roots (VR) in 19 genetically confirmed cases of FRDA by immunocytochemistry and single- and double-label immunofluorescence with antibodies to specific proteins of myelin, neurons and axons; S-100α as a marker of satellite and Schwann cells; laminin; and the iron-responsive proteins ferritin, mitochondrial ferritin, and ferroportin. Confocal images of axons and myelin allowed the quantitative analysis of fiber density and size, and the extent of DR and VR myelination. A novel technology, high-definition X-ray fluorescence (HDXRF) of polyethylene glycol-embedded fixed tissue, was used to “map” iron in DRG. Unfixed frozen tissue of DRG in three cases was available for the chemical assay of total iron. Proliferation of S-100α-positive satellite cells accompanied neuronal destruction in DRG of all FRDA cases. Double-label visualization of peripheral nerve myelin protein 22 and phosphorylated neurofilament protein confirmed the known loss of large myelinated DR fibers, but quantitative fiber counts per unit area did not change. The ratio of myelinated to neurofilament-positive fibers in DR rose significantly from 0.55 to 0.66. In VR of FRDA patients, fiber counts and degree of myelination did not differ from normal. Pooled histograms of axonal perimeters disclosed a shift to thinner fibers in DR, but also a modest excess of smaller axons in VR. Schwann cell cytoplasm in DR of FRDA was depleted while laminin reaction product remained prominent. Numerous small axons clustered around fewer Schwann cells. Ferritin in normal DRG localized to satellite cells, and proliferation of these cells in FRDA caused wide rims of reaction product about degenerating nerve cells. Mitochondrial ferritin was not detectable. Ferroportin was present in the cytoplasm of normal satellite cells and neurons, and in large axons of DR and VR. In FRDA, some DRG neurons lost their cytoplasmic ferroportin immunoreactivity, whereas the cytoplasm of satellite cells remained ferroportin positive. Ferroportin in DR axons disappeared in parallel with atrophy of large fibers. HDXRF of DRG detected regional and diffuse increases in iron fluorescence that matched ferritin expression in satellite cells. The observations support the conclusions that satellite cells and DRG neurons are affected by iron dysmetabolism; and that regeneration and inappropriate myelination of small axons in DR are characteristic of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  CAS  PubMed  Google Scholar 

  2. Bielschowsky M (1934) Zur Kenntnis des Friedreich-Komplexes. Zeitschr ges Neurol Psychiat 150:373–404

    Article  Google Scholar 

  3. Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S (2009) Mitochondrial ferritin limits oxidative damage regulating mitochondrial availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet 18:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  PubMed  Google Scholar 

  5. Caruso G, Santoro Perretti A et al (1983) Friedreich’s ataxia: electrophysiological and histological findings. Acta Neurol Scand 67:26–40

    Article  CAS  PubMed  Google Scholar 

  6. Chen ZW, Gibson WM, Huang H (2008) High-definition X-ray fluorescence: principles and techniques. X-ray Optics Instrum:1–10. doi:10.1155/2008/318171

  7. Davis MD, Kaufman S, Milstein S (1986) A modified ferrozine method for the measurement of enzyme-bound iron. J Biochem Biophys Methods 13:39–45

    Article  CAS  PubMed  Google Scholar 

  8. Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143

    Article  CAS  PubMed  Google Scholar 

  9. Friedreich N (1877) Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen. Nachtrag. Virchows Arch Pathol Anat Physiol Klin Med 70:140–152

    Article  Google Scholar 

  10. Gibson WM, Chen ZW, Li D (2008) High definition X-ray fluorescence: applications. X-Ray Optics Instrum. doi:10.1155/2008/709692

  11. Gonzalez-Martinez T, Perez-Piñera P, Díaz-Esnal B, Vega JA (2003) S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60:633–638

    Article  CAS  PubMed  Google Scholar 

  12. Hughes JT, Brownell B, Hewer RL (1968) The peripheral sensory pathway in Friedreich’s ataxia. Brain 91:803–818

    Article  CAS  PubMed  Google Scholar 

  13. Inoue K, Hirano A, Hasson J (1979) Friedreich’s ataxia selectively involves the large neurons of the dorsal root ganglia. Trans Am Neurol Assoc 104:75–76

    CAS  PubMed  Google Scholar 

  14. Jitpimolmard S, Small J, King RHM et al (1993) The sensory neuropathy of Friedreich’s ataxia: an autopsy study of a case with prolonged survival. Acta Neuropathol 86:29–35

    Article  CAS  PubMed  Google Scholar 

  15. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102:1324–1328

    Article  CAS  PubMed  Google Scholar 

  16. Koeppen AH (1998) The hereditary ataxias. J Neuropathol Exp Neurol 57:531–543

    Article  CAS  PubMed  Google Scholar 

  17. Koeppen AH, Michael SC, Knutson MD et al (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173

    Article  CAS  PubMed  Google Scholar 

  18. Koeppen AH, Michael SC, Li D et al (2008) The pathology of superficial siderosis of the central nervous system. Acta Neuropathol 116:371–382

    Article  CAS  PubMed  Google Scholar 

  19. Lamarche JB, Côté M, Lemieux B (1980) The cardiomyopathy of Friedreich’s ataxia: morphological observations in 3 cases. Can J Neurol Sci 7:389–396

    CAS  PubMed  Google Scholar 

  20. Lambrior AA (1911) Un cas de maladie de Friedreich avec autopsie. Rev Neurol 21:525–540

    Google Scholar 

  21. Lawson SN (1992) Morphological and biochemical cell types of sensory neurons. In: Cott SA (ed) Sensory neurons: diversity, development, and plasticity. Oxford University Press, Oxford, pp 27–59

    Google Scholar 

  22. Lieberman AR (1976) Sensory ganglia. In: Landon DN (ed) The peripheral nerve. Chapman Hall, London, pp 188–278

    Google Scholar 

  23. Michael S, Petrocine SV, Qian J et al (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5:257–267

    Article  CAS  PubMed  Google Scholar 

  24. Moos T, Nielsen TR, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740

    Article  CAS  PubMed  Google Scholar 

  25. Morrissey TK, Kleitman N, Bunge RP (1991) Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci 11:2433–2442

    CAS  PubMed  Google Scholar 

  26. Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiatr 3:180–200

    Google Scholar 

  27. Nageotte J (1907) Recherches expérimentales sur la morphologie des cellules et des fibres des ganglions rachidiens. Rev Neurol 15:357–368

    Google Scholar 

  28. Pandolfo M (2008) Friedreich ataxia. Arch Neurol 65:1296–1303

    Article  PubMed  Google Scholar 

  29. Rice AE, Mendez MJ, Hokanson CA, Rees DC, Björkman PJ (2008) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386:717–732

    Article  Google Scholar 

  30. Rouault TA, Tong WH (2008) Iron–sulfur cluster biogenesis and human disease. Trends Genet 24:398–407

    Article  CAS  PubMed  Google Scholar 

  31. Scarpini ES, Meola G, Baron P, Beretta S, Velicogna M, Scarlato G (1986) S-100 protein and laminin: Immunocytochemical markers for human Schwann cells in vitro. Exp Neurol 93:77–83

    Article  CAS  PubMed  Google Scholar 

  32. Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cord-rootlet junction in man. J Comp Neurol 153:15–26

    Article  CAS  PubMed  Google Scholar 

  33. Smith-Thomas LC, Fawcett JW (1989) Expression of Schwann cell markers by mammalian neural crest cells in vitro. Development 105:251–262

    CAS  PubMed  Google Scholar 

  34. Stefansson K, Wollmann RL, Moore BW (1982) Distribution of S-100 protein outside the central nervous system. Brain Res 234:309–317

    Article  CAS  PubMed  Google Scholar 

  35. Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the families of FRDA patients who agreed to donate tissues for research. Friedreich’s Ataxia Research Alliance, National Ataxia Foundation, National Institutes of Health, and Neurochemical Research, Inc., have provided financial support. The work was completed in the laboratories of the Research Service, VA Medical Center, Albany, NY, USA. The authors thank the collaborating pathologists who performed extramural autopsies and harvested the samples for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf H. Koeppen.

Additional information

Walter M. Gibson: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeppen, A.H., Morral, J.A., Davis, A.N. et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol 118, 763–776 (2009). https://doi.org/10.1007/s00401-009-0589-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0589-x

Keywords

Navigation