Skip to main content
Log in

Myenteric neurons of the ileum that express somatostatin are a target of prion neuroinvasion in an alimentary model of sheep scrapie

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neuroinvasion of the enteric nervous system by prions is an important step in dissemination to the brain, yet very little is known about the basic process of enteric neuroinvasion. Using an alimentary model of neonatal disease transmission, neuroinvasion by scrapie prions in the ileum of lambs was detected by immunohistochemical staining for the disease-associated form of the prion protein, PrPSc. Odds ratios (OR) were determined for the frequency of PrPSc staining within enteric somata categorized by plexus location (myenteric, submucosal) and neurochemical staining (PGP 9.5, neural nitric oxide synthase, somatostatin, substance P, and vasoactive intestinal polypeptide). PrPSc was observed in 4.48 ± 4.26% of myenteric neurons and 2.57 ± 1.82% of submucosal neurons in five lambs aged 208–226 days but not in a lamb aged 138 days. The relative frequency of PrPSc within enteric somata was interdependent on plexus location and neurochemical type. Interestingly, PrPSc was observed more frequently within myenteric neurons than in submucosal neurons (PGP 9.5; OR = 1.72, 95% confidence interval = 1.21–2.44), and was observed within the myenteric plexus approximately 4× (2.16–6.94) more frequently in somatostatin neurons than in the general neural population stained by PGP 9.5. Nerve fibers stained for somatostatin were present in the mucosa and near PrPSc staining within Peyer’s patches. The results suggest that somatostatin-expressing enteric neurons, with fiber projections near Peyer’s patches, but with somata present in greatest proportion within the myenteric plexus, are an early target for neuroinvasion by scrapie prions and could serve an important role in neural dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguzzi A, Heikenwalder M, Miele G (2004) Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. J Clin Invest 114:153–160

    PubMed  CAS  Google Scholar 

  2. Alverson J, O’Rourke KI, Baszler TV (2006) PrPSc accumulation in fetal cotyledons of scrapie-resistant lambs is influenced by fetus location in the uterus. J Gen Virol 87:1035–1041

    Article  PubMed  CAS  Google Scholar 

  3. Andreoletti O, Berthon P, Marc D, Sarradin P, Grosclaude J, van Keulen L, Schelcher F, Elsen JM, Lantier F (2000) Early accumulation of PrP(Sc) in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J Gen Virol 81:3115–3126

    PubMed  CAS  Google Scholar 

  4. Barron RM, Campbell SL, King D, Bellon A, Chapman KE, Williamson RA, Manson JC (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282:35878–35886

    Article  PubMed  CAS  Google Scholar 

  5. Beekes M, McBride PA (2007) The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. FEBS J 274:588–605

    Article  PubMed  CAS  Google Scholar 

  6. Brookes SJH, Costa M (2002) Cellular organization of the mammalian enteric nervous system. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Taylor and Francis, New York, pp 393–468

    Google Scholar 

  7. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  PubMed  CAS  Google Scholar 

  8. Chiocchetti R, Grandis A, Bombardi C, Lucchi ML, Dal Lago DT, Bortolami R, Furness JB (2006) Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Cell Tissue Res 323:183–196

    Article  PubMed  CAS  Google Scholar 

  9. Costa M, Furness JB, Smith IJ, Davies B, Oliver J (1980) An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience 5:841–852

    Article  PubMed  CAS  Google Scholar 

  10. De Jonge F, Van Nassauw L, De Man JG, De Winter BY, Van Meir F, Depoortere I, Peeters TL, Pelckmans PA, Van Marck E, Timmermans JP (2003) Effects of Schistosoma mansoni infection on somatostatin and somatostatin receptor 2A expression in mouse ileum. Neurogastroenterol Motil 15:149–159

    Article  PubMed  Google Scholar 

  11. Defaweux V, Dorban G, Demonceau C, Piret J, Jolois O, Thellin O, Thielen C, Heinen E, Antoine N (2005) Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer’s patches: potential sites for neuroinvasion in prion diseases. Microsc Res Tech 66:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Ersdal C, Ulvund MJ, Espenes A, Benestad SL, Sarradin P, Landsverk T (2005) Mapping PrPSc propagation in experimental and natural scrapie in sheep with different PrP genotypes. Vet Pathol 42:258–274

    Article  PubMed  CAS  Google Scholar 

  13. Espenes A, Press CM, Landsverk T, Tranulis MA, Aleksandersen M, Gunnes G, Benestad SL, Fuglestveit R, Ulvund MJ (2006) Detection of PrP(Sc) in rectal biopsy and necropsy samples from sheep with experimental scrapie. J Comp Pathol 134:115–125

    Article  PubMed  CAS  Google Scholar 

  14. Feher E, Fodor M, Burnstock G (1992) Distribution of somatostatin-immunoreactive nerve fibres in Peyer’s patches. Gut 33:1195–1198

    Article  PubMed  CAS  Google Scholar 

  15. Furness JB (2006) Structure of the enteric nervous system. In: Furness JB (ed) The enteric nervous system. Blackwell, Malden, pp 1–28

    Google Scholar 

  16. Gabella G (1987) The number of neurons in the small intestine of mice, guinea-pigs and sheep. Neuroscience 22:737–752

    Article  PubMed  CAS  Google Scholar 

  17. Glaysher BR, Mabbott NA (2007) Role of the GALT in scrapie agent neuroinvasion from the intestine. J Immunol 178:3757–3766

    PubMed  CAS  Google Scholar 

  18. Gonzalez L, Jeffrey M, Siso S, Martin S, Bellworthy SJ, Stack MJ, Chaplin MJ, Davis L, Dagleish MP, Reid HW (2005) Diagnosis of preclinical scrapie in samples of rectal mucosa. Vet Rec 156:846–847

    PubMed  Google Scholar 

  19. Heggebo R, Press CM, Gunnes G, Lie KI, Tranulis MA, Ulvund M, Groschup MH, Landsverk T (2000) Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. J Gen Virol 81:2327–2337

    PubMed  CAS  Google Scholar 

  20. Heggebo R, Gonzalez L, Press CM, Gunnes G, Espenes A, Jeffrey M (2003) Disease-associated PrP in the enteric nervous system of scrapie-affected Suffolk sheep. J Gen Virol 84:1327–1338

    Article  PubMed  CAS  Google Scholar 

  21. Hens J, Schrodl F, Brehmer A, Adriaensen D, Neuhuber W, Scheuermann DW, Schemann M, Timmermans JP (2000) Mucosal projections of enteric neurons in the porcine small intestine. J Comp Neurol 421:429–436

    Article  PubMed  CAS  Google Scholar 

  22. Hens J, Vanderwinden JM, De Laet MH, Scheuermann DW, Timmermans JP (2001) Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. J Neurochem 76:464–471

    Article  PubMed  CAS  Google Scholar 

  23. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  24. Hortells P, Monzon M, Monleon E, Acin C, Vargas A, Bolea R, Lujan L, Badiola JJ (2006) Pathological findings in retina and visual pathways associated to natural Scrapie in sheep. Brain Res 1108:188–194

    Article  PubMed  CAS  Google Scholar 

  25. Jeffrey M, Gonzalez L, Espenes A, Press CM, Martin S, Chaplin M, Davis L, Landsverk T, MacAldowie C, Eaton S, McGovern G (2006) Transportation of prion protein across the intestinal mucosa of scrapie-susceptible and scrapie-resistant sheep. J Pathol 209:4–14

    Article  PubMed  CAS  Google Scholar 

  26. Jeffrey M, Gonzalez L (2007) Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathol Appl Neurobiol 33:373–394

    Article  PubMed  CAS  Google Scholar 

  27. Lalatta-Costerbosa G, Mazzoni M, Clavenzani P, Di Guardo G, Mazzuoli G, Marruchella G, De Grossi L, Agrimi U, Chiocchetti R (2007) Nitric oxide synthase immunoreactivity and NADPH-d histochemistry in the enteric nervous system of Sarda breed sheep with different PrP genotypes in whole-mount and cryostat preparations. J Histochem Cytochem 55:387–401

    Article  PubMed  CAS  Google Scholar 

  28. Mabbott NA, MacPherson GG (2006) Prions and their lethal journey to the brain. Nat Rev Microbiol 4:201–211

    Article  PubMed  CAS  Google Scholar 

  29. Mbaku EM, Zhang L, Pearce WJ, Duckles SP, Buchholz J (2003) Chronic hypoxia alters the function of NOS nerves in cerebral arteries of near-term fetal and adult sheep. J Appl Physiol 94:724–732

    PubMed  Google Scholar 

  30. O’Rourke KI, Baszler TV, Miller JM, Spraker TR, Sadler-Riggleman I, Knowles DP (1998) Monoclonal antibody F89/160.1.5 defines a conserved epitope on the ruminant prion protein. J Clin Microbiol 36:1750–1755

    PubMed  CAS  Google Scholar 

  31. O’Rourke KI, Baszler TV, Besser TE, Miller JM, Cutlip RC, Wells GA, Ryder SJ, Parish SM, Hamir AN, Cockett NE, Jenny A, Knowles DP (2000) Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J Clin Microbiol 38:3254–3259

    PubMed  CAS  Google Scholar 

  32. Pfannkuche H, Schemann M, Gabel G (2002) Ruminal muscle of sheep is innervated by non-polarized pathways of cholinergic and nitrergic myenteric neurones. Cell Tissue Res 309:347–354

    Article  PubMed  CAS  Google Scholar 

  33. Pompolo S, Furness JB (1998) Quantitative analysis of inputs to somatostatin-immunoreactive descending interneurons in the myenteric plexus of the guinea-pig small intestine. Cell Tissue Res 294:219–226

    Article  PubMed  CAS  Google Scholar 

  34. Portbury AL, Pompolo S, Furness JB, Stebbing MJ, Kunze WA, Bornstein JC, Hughes S (1995) Cholinergic, somatostatin-immunoreactive interneurons in the guinea pig intestine: morphology, ultrastructure, connections and projections. J Anat 187:303–321

    PubMed  Google Scholar 

  35. Porto-Carreiro I, Fevrier B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cells Mol Dis 35:143–148

    Article  PubMed  CAS  Google Scholar 

  36. Press CM, Heggebo R, Espenes A (2004) Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv Drug Deliv Rev 56:885–899

    Article  PubMed  CAS  Google Scholar 

  37. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, Fu YX, Lipp M, Aguzzi A (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425:957–962

    Article  PubMed  CAS  Google Scholar 

  38. Prusiner SB, Groth D, Serban A, Koehler R, Foster D, Torchia M, Burton D, Yang SL, DeArmond SJ (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA 90:10608–10612

    Article  PubMed  CAS  Google Scholar 

  39. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  40. Shmakov AN, McLennan NF, McBride P, Farquhar CF, Bode J, Rennison KA, Ghosh S (2000) Cellular prion protein is expressed in the human enteric nervous system. Nat Med 6:840–841

    Article  PubMed  CAS  Google Scholar 

  41. Song ZM, Brookes SJ, Steele PA, Costa M (1992) Projections and pathways of submucous neurons to the mucosa of the guinea-pig small intestine. Cell Tissue Res 269:87–98

    Article  PubMed  CAS  Google Scholar 

  42. Song ZM, Brookes SJ, Ramsay GA, Costa M (1997) Characterization of myenteric interneurons with somatostatin immunoreactivity in the guinea-pig small intestine. Neuroscience 80:907–923

    Article  PubMed  CAS  Google Scholar 

  43. Spraker TR, O’Rourke KI, Balachandran A, Zink RR, Cummings BA, Miller MW, Powers BE (2002) Validation of monoclonal antibody F99/97.6.1 for immunohistochemical staining of brain and tonsil in mule deer (Odocoileus hemionus) with chronic wasting disease. J Vet Diagn Invest 14:3–7

    PubMed  CAS  Google Scholar 

  44. Timmermans JP, Hens J, Adriaensen D (2001) Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec 262:71–78

    Article  PubMed  CAS  Google Scholar 

  45. Tolcos M, Harding R, Loeliger M, Breen S, Cock M, Duncan J, Rees S (2003) The fetal brainstem is relatively spared from injury following intrauterine hypoxemia. Brain Res Dev Brain Res 143:73–81

    Article  PubMed  CAS  Google Scholar 

  46. van Keulen LJ, Schreuder BE, Vromans ME, Langeveld JP, Smits MA (1999) Scrapie-associated prion protein in the gastrointestinal tract of sheep with natural scrapie. J Comp Pathol 121:55–63

    Article  PubMed  Google Scholar 

  47. van Keulen LJ, Vromans ME, van Zijderveld FG (2002) Early and late pathogenesis of natural scrapie infection in sheep. APMIS 110:23–32

    Article  PubMed  Google Scholar 

  48. Van Op den Bosch J, van Nassauw L, Lantermann K, van Marck E, Timmermans JP (2007) Effect of intestinal inflammation on the cell-specific expression of somatostatin receptor subtypes in the murine ileum. Neurogastroenterol Motil 19:596–606

    Article  Google Scholar 

  49. Vergara-Esteras P, Harrison FA, Brown D (1990) The localization of somatostatin-like immunoreactivity in the alimentary tract of the sheep with observations on the effect of an infection with the parasite Haemonchus contortus. Exp Physiol 75:779–789

    PubMed  CAS  Google Scholar 

  50. Vulchanova L, Casey MA, Crabb GW, Kennedy WR, Brown DR (2007) Anatomical evidence for enteric neuroimmune interactions in Peyer’s patches. J Neuroimmunol 185:64–74

    Article  PubMed  CAS  Google Scholar 

  51. Wathuta EM (1986) The distribution of vasoactive intestinal polypeptide-like, substance P-like and bombesin-like immunoreactivity in the digestive system of the sheep. Q J Exp Physiol 71:615–631

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tom Truscott for histological assistance; Duane Chandler, Alicia Ewing, Jim Reynolds, Caitlin Rizzo, and Ira Mickelsen for assistance with animal care and necropsy; and Bruce Mackey (USDA, Albany, CA) for statistical consultation. This work was paid for by CRIS 5348-32000-019-00D from the Agricultural Research Service, US Department of Agriculture. Lindsay Fry was supported by a summer research stipend from the Research Scholars Program, College of Veterinary Medicine, Washington State University. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, D.A., Yan, H., Fry, L.M. et al. Myenteric neurons of the ileum that express somatostatin are a target of prion neuroinvasion in an alimentary model of sheep scrapie. Acta Neuropathol 115, 651–661 (2008). https://doi.org/10.1007/s00401-008-0374-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0374-2

Keywords

Navigation