Skip to main content

Advertisement

Log in

Redox metals and oxidative abnormalities in human prion diseases

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Prion diseases are characterized by the accumulation of diffuse and aggregated plaques of protease-resistant prion protein (PrP) in the brains of affected individuals and animals. Whereas prion diseases in animals appear to be almost exclusively transmitted by infection, human prion diseases most often occur sporadically and, to a lesser extent, by inheritance or infection. In the sporadic cases (sporadic Creutzfeld-Jakob disease, sCJD), PrP-containing plaques are infrequent, whereas in transmitted (variant CJD) and inherited (Gerstmann-Straussler-Scheinker Syndrome) cases, plaques are a usual feature. In the current study, representative cases from each of the classes of human prion disease were analyzed for the presence of markers of oxidative damage that have been found in other neurodegenerative diseases. Interestingly, we found that the pattern of deposition of PrP, amyloid-β, and redox active metals was distinct for the various prion diseases. Whereas 8-hydroxyguanosine has been shown to be increased in sCJD, and inducible NOS is increased in scrapie-infected mice, well-studied markers of oxidative damage that accumulate in the lesions of other neurodegenerative diseases (such as Alzheimer’s disease, progressive supranuclear palsy, and Parkinson’s disease), such as heme oxygenase-1 and lipid peroxidation, were not found around PrP deposits or in vulnerable neurons. These findings suggest an important distinction in prion-related oxidative stress, indicating that different neurodegenerative pathways are involved in different prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, Bohlen A von, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687

    PubMed  Google Scholar 

  2. Budka H, Aguzzi A, Brown P, Brucher JM, Bugiani O, Gullotta F, Haltia M, Hauw JJ, Ironside JW, Jellinger K (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5:459–466

    PubMed  Google Scholar 

  3. Bugiani O, Giaccone G, Verga L, Pollo B, Frangione B, Farlow MR, Tagliavini F, Ghetti B (1993) Beta PP participates in PrP-amyloid plaques of Gerstmann-Straussler-Scheinker disease, Indiana kindred. J Neuropathol Exp Neurol 52:64–70

    PubMed  Google Scholar 

  4. Castellani RJ, Harris PL, Sayre LM, Fujii J, Taniguchi N, Vitek MP, Founds H, Atwood CS, Perry G, Smith MA (2001) Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31:175–180

    Article  PubMed  Google Scholar 

  5. Castellani RJ, Perry G, Smith MA (2004) Prion disease and Alzheimer’s disease: pathogenic overlap. Acta Neurobiol Exp (Wars) 64:11–17

    Google Scholar 

  6. DeArmond SJ (2000) Cerebral amyloidosis in prion diseases. Amyloid 7:3–6

    PubMed  Google Scholar 

  7. Fernaeus S, Halldin J, Bedecs K, Land T (2005) Changed iron regulation in scrapie-infected neuroblastoma cells. Brain Res Mol Brain Res 133:266–273

    Article  PubMed  Google Scholar 

  8. Ferrer I (1999) Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis? Acta Neuropathol 97:5–12

    PubMed  Google Scholar 

  9. Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239

    Article  PubMed  Google Scholar 

  10. Ghetti B, Tagliavini F, Masters CL, Beyreuther K, Giaccone G, Verga L, Farlow MR, Conneally PM, Dlouhy SR, Azzarelli B (1989) Gerstmann-Straussler-Scheinker disease. II. Neurofibrillary tangles and plaques with PrP-amyloid coexist in an affected family. Neurology 39:1453-1461

    PubMed  Google Scholar 

  11. Ghetti B, Tagliavini F, Takao M, Bugiani O, Piccardo P (2003) Hereditary prion protein amyloidoses. Clin Lab Med 23:65–85, viii

    Article  PubMed  Google Scholar 

  12. Guentchev M, Wanschitz J, Voigtlander T, Flicker H, Budka H (1999) Selective neuronal vulnerability in human prion diseases. Fatal familial insomnia differs from other types of prion diseases. Am J Pathol 155:1453–1457

    PubMed  Google Scholar 

  13. Guentchev M, Voigtlander T, Haberler C, Groschup MH, Budka H (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol Dis 7:270–273

    PubMed  Google Scholar 

  14. Guentchev M, Siedlak SL, Jarius C, Tagliavini F, Castellani RJ, Perry G, Smith MA, Budka H (2002) Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis 9:275–281

    Article  PubMed  Google Scholar 

  15. Hall D, Edskes H (2004) Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J Mol Biol 336:775–786

    Article  PubMed  Google Scholar 

  16. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  Google Scholar 

  17. Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem [Mar 14; Epub ahead of print]

  18. Ironside JW (2000) Pathology of variant Creutzfeldt-Jakob disease. Arch Virol Suppl (16):143–151

    Google Scholar 

  19. Kascsak RJ, Rubenstein R, Merz PA, Tonna-DeMasi M, Fersko R, Carp RI, Wisniewski HM, Diringer H (1987) Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol 61:3688–3693

    PubMed  Google Scholar 

  20. Klatzo I, Gajdusek DC, Zigas V (1959) Pathology of Kuru. Lab Invest 8:799–847

    PubMed  Google Scholar 

  21. Kubler E, Oesch B, Raeber AJ (2003) Diagnosis of prion diseases. Br Med Bull 66:267–279

    Article  PubMed  Google Scholar 

  22. Lucas M, Izquierdo G, Munoz C, Solano F (1997) Internucleosomal breakdown of the DNA of brain cortex in human spongiform encephalopathy. Neurochem Int 31:241–244

    Article  PubMed  Google Scholar 

  23. Mishra RS, Basu S, Gu Y, Luo X, Zou WQ, Mishra R, Li R, Chen SG, Gambetti P, Fujioka H, Singh N (2004) Protease-resistant human prion protein and ferritin are cotransported across Caco-2 epithelial cells: implications for species barrier in prion uptake from the intestine. J Neurosci 24:11280–11290

    Article  PubMed  Google Scholar 

  24. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    PubMed  Google Scholar 

  25. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, Smith MA (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017

    PubMed  Google Scholar 

  26. Perry G, Sayre LM, Atwood CS, Castellani RJ, Cash AD, Rottkamp CA, Smith MA (2002) The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 16:339–352

    PubMed  Google Scholar 

  27. Piccardo P, Ghetti B, Dickson DW, Vinters HV, Giaccone G, Bugiani O, Tagliavini F, Young K, Dlouhy SR, Seiler C, et al (1995) Gerstmann-Straussler-Scheinker disease (PRNP P102L): amyloid deposits are best recognized by antibodies directed to epitopes in PrP region 90–165. J Neuropathol Exp Neurol 54:790–801

    PubMed  Google Scholar 

  28. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  Google Scholar 

  29. Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H, Lehmann S, Favier A (2003) Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278:9064–9072

    Article  PubMed  Google Scholar 

  30. Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75:153–161

    Article  PubMed  Google Scholar 

  31. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    PubMed  Google Scholar 

  32. Sayre LM, Perry G, Smith MA (1999) In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol 309:133–152

    PubMed  Google Scholar 

  33. Sayre LM, Perry G, Atwood CS, Smith MA (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol (Noisy-le-grand) 46:731–741

    Google Scholar 

  34. Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, Prelli F, Frangione B, Wisniewski T (2003) Copper chelation delays the onset of prion disease. J Biol Chem 278:46199–46202

    Article  PubMed  Google Scholar 

  35. Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ, Wiggert B, Petersen RB, Perry G (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145:42–47

    PubMed  Google Scholar 

  36. Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868

    Article  PubMed  Google Scholar 

  37. Thackray AM, Knight R, Haswell SJ, Bujdoso R, Brown DR (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J 362:253–258

    PubMed  Google Scholar 

  38. Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, Li R, Gambetti P, Sy MS, Brown DR (2001) Aberrant metal binding by prion protein in human prion disease. J Neurochem 78:1400–1408

    Article  PubMed  Google Scholar 

  39. Wong BS, Liu T, Li R, Pan T, Petersen RB, Smith MA, Gambetti P, Perry G, Manson JC, Brown DR, Sy MS (2001) Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem 76:565–572

    Article  PubMed  Google Scholar 

  40. Wong BS, Liu T, Paisley D, Li R, Pan T, Chen SG, Perry G, Petersen RB, Smith MA, Melton DW, Gambetti P, Brown DR, Sy MS (2001) Induction of HO-1 and NOS in doppel-expressing mice devoid of PrP: implications for doppel function. Mol Cell Neurosci 17:768–775

    PubMed  Google Scholar 

  41. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech Ageing Dev 123:39–46

    Article  PubMed  Google Scholar 

  42. Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 3:219–226

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, R.B., Siedlak, S.L., Lee, Hg. et al. Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathol 110, 232–238 (2005). https://doi.org/10.1007/s00401-005-1034-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-1034-4

Keywords

Navigation