Skip to main content

Advertisement

Log in

3D-Bioprinting in der regenerativen Therapie von Herz- und Gefäßerkrankungen

Zukunft oder Beginn der klinischen Translation?

3D bioprinting in the regenerative treatment of cardiovascular diseases

Future or start of clinical translation?

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die Fähigkeiten des menschlichen Körpers zur Regeneration sind limitiert, und Gewebe und Organspenden sind seit Jahren rückläufig. Moderne Biotechnologie, d. h. Bioengineering und insbesondere der 3D-Biodruck (3D-Bioprinting), wecken die Hoffnung auf eine Verbesserung der Therapie von kardiovaskulären Erkrankungen. Das Ziel des 3D-Bioprinting ist es, die Vorteile der schnellen, präzisen und reproduzierbaren maschinellen Instant-Fertigung, wie sie aus der Industrie bekannt sind, auf lebende, komplexe Strukturen zu übertragen und die so erzeugten Gewebeverbände und Organoide anschließend im Bioreaktor weiterzukultivieren. Drei der häufigsten Bioprinting-Verfahren, d. h. das injektionsbasierte Bioprinting, das laserbasierte Bioprinting und das extrusionsbasierte Bioprinting, sollen im Folgenden, vor dem Hintergrund der Anwendung in der kardiovaskulären Medizin, erläutert werden. Weiterhin werden exemplarisch die aktuellen und zukünftigen Möglichkeiten des 3D-Bioprinting in der kardiovaskulären Medizin vorgestellt.

Abstract

The human body’s ability to regenerate is limited and tissue and organ donations have been declining for years. Modern biotechnology, i.e. bioengineering and in particular 3D-bioprinting raises the hope of improving the treatment of cardiovascular diseases. The goal of 3D-bioprinting is to transfer the advantages of fast, precise and reproducible instant machine fabrication, as known from industry, to living complex structures and to subsequently further cultivate the resulting tissue composites and organoids in a bioreactor. Three of the most common bioprinting methods, i.e. injection-based bioprinting, laser-based bioprinting and extrusion-based bioprinting, are described and their potential application in cardiovascular medicine is discussed. Furthermore, the current and future possibilities of 3D-bioprinting in cardiovascular medicine are highlighted in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Michel SG, Madariaga MLL, Villani V, Shanmugarajah K (2015) Current progress in xenotransplantation and organ bioengineering. Int J Surg 13:239–244

    Article  Google Scholar 

  2. Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–529

    Article  CAS  Google Scholar 

  3. Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:14103

    Article  Google Scholar 

  4. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536

    Article  CAS  Google Scholar 

  5. Li J, Chen M, Fan X, Zhou H (2016) Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 14(1):1–15

    Article  Google Scholar 

  6. Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT (2017) Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med 6(10):1940–1948

    Article  Google Scholar 

  7. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  CAS  Google Scholar 

  8. Choi CH, Lin LY, Cheng CC, Chang CH (2015) Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol 4(4):P3044

    Article  CAS  Google Scholar 

  9. Arnold CB, Serra P, Piqué A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32:23–32

    Article  CAS  Google Scholar 

  10. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3‑dimensional cell patterns. Biomed Microdevices 6:139–147

    Article  CAS  Google Scholar 

  11. Keriquel V, Oliveira H, Remy M, Ziane S, Rousseau B, Rey S, Catros S, Amedee J (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting for in vivo bone regeneration applications. 7(1):1–10

    CAS  Google Scholar 

  12. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5:507–515

    Article  Google Scholar 

  13. Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1(9):930–948

    Article  CAS  Google Scholar 

  14. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305

    Article  CAS  Google Scholar 

  15. Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Ther 3(5):701–704

    Article  Google Scholar 

  16. Wust S, Godla ME, Muller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640

    Article  CAS  Google Scholar 

  17. Cornelissen M, De Schryver T, Gevaert E, Billiet T, Dubruel P (2013) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62

    PubMed  Google Scholar 

  18. Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:1–8

    Article  Google Scholar 

  19. Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8:1–12

    Article  Google Scholar 

  20. Ovsianikov A, Lin S, Holzl K, Tytgat L, Van Vlierberghe S, Gu L (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:32002

    Article  Google Scholar 

  21. Blaeser A, Korsten A, Neuss S, Fischer H, Duarte Campos DF, Jakel J, Vogt M (2014) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A 21:740–756

    PubMed  Google Scholar 

  22. Ewald A, Schweinlin M, Schacht K, Jüngst T, Scheibel T, Groll J (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed 54:2816–2820

    Article  Google Scholar 

  23. Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, Van Weeren PR, Dhert WJA, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838

    Article  CAS  Google Scholar 

  24. Busbee TA, Lewis JA, Kolesky DB, Truby RL, Gladman AS, Homan KA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  Google Scholar 

  25. Atala A, Yoo JJ, Zhao W, Dice D, Binder KW, Xu T, Albanna MZ (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:15001

    Article  Google Scholar 

  26. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  CAS  Google Scholar 

  27. Boland T, Aho M, Zile M, Xu T, Baicu C (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1:35001

    Article  Google Scholar 

  28. Liu J, Wang W, Steinhoff G, Gaebel R, Toelk A, Ma N, Wang F, Mark P, Li W, Gruene M, Koch L, Guan J, Chichkov B, Klopsch C (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230

    Article  Google Scholar 

  29. Gaetani R, Doevendans PA, Metz CHG, Alblas J, Messina E, Giacomello A, Sluijter JPG (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790

    Article  CAS  Google Scholar 

  30. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Cho DW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274

    Article  CAS  Google Scholar 

  31. Maiullari F, Costantini M, Milan M, Pace V, Chirivi M, Maiullari S, Rainer A, Baci D, Marei HES, Seliktar D, Gargioli C, Bearzi C, Rizzi R (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8:1

    Article  CAS  Google Scholar 

  32. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C et al (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37(3):252–258

    Article  CAS  Google Scholar 

  33. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6:1900344

    Article  Google Scholar 

  34. Mahara A, Somekawa S, Kobayashi N, Hirano Y, Kimura Y, Fujisato T, Yamaoka T (2015) Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials 58:54–62

    Article  CAS  Google Scholar 

  35. Sasmal P, Datta P, Wu Y, Ozbolat IT (2018) 3D bioprinting for modelling vasculature. Microphysiol Syst. https://doi.org/10.21037/mps.2018.10.02

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3(1):134–143

    Article  CAS  Google Scholar 

  37. Wang Z, Liu L, Mithieux SM, Weiss AS (2020) Fabricating organized elastin in vascular grafts. Trends Biotechnol 39(5):505–518

    Article  Google Scholar 

  38. Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold‐free inkjet printing of three‐dimensional zigzag cellular tubes. Biotechnology and bioengineering 109(12):3152–3160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouven Berndt.

Ethics declarations

Interessenkonflikt

R. Berndt gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Für das Thema dieser Arbeit wurde von der Deutschen Stiftung für Herzforschung (DSHF) zusammen mit der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie (DGTHG) das Dr. Rusche-Forschungsprojekt 2021 vergeben.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berndt, R. 3D-Bioprinting in der regenerativen Therapie von Herz- und Gefäßerkrankungen. Z Herz- Thorax- Gefäßchir 35, 364–369 (2021). https://doi.org/10.1007/s00398-021-00469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-021-00469-4

Schlüsselwörter

Keywords

Navigation