Skip to main content
Log in

HRS-Expertenkonsensus (2017) Sondenmanagement und -extraktion von kardialen elektronischen Implantaten sowie EHRA-Expertenkonsensus (2018) zur wissenschaftlichen Aufarbeitung von Sondenextraktionen

Kommentar der AG Herzrhythmusstörungen der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie

HRS expert consensus (2017) lead management and extraction of cardiac implantable electronic devices as well as EHRA expert consensus (2018) on scientific analysis of lead extraction

Comments of the Working Group on Heart Rhythm Disorders of the German Society for Thoracic, Cardiac and Vascular Surgery

  • Aus der DGTHG
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

In den vergangenen Jahren wurden zwei wesentliche internationale Experten-Empfehlungen zum Sondenmanagement kardialer implantierbarer elektronischer Devices (CIED) überarbeitet.

So veröffentlichte zum einen die Heart Rhythm Society (HRS) 2017 einen Expertenkonsensus zum Thema Sondenmanagement unter Einschluss der Aspekte Haltbarkeit, Fehlfunktionen und Rückrufe, der Indikationen von Revisionseingriffen, des periprozeduralen Managements, einschließlich der personellen und logistischen Voraussetzungen von Sondenextraktionen, und gab zudem Empfehlungen zur Qualitätssicherung und zum Datenmanagement. Zum anderen publizierte die European Heart Rhythm Association (EHRA) 2018 Empfehlungen zum Design von klinischen Studien und Registern und forderte zudem eine intensivere wissenschaftliche Aufarbeitung der Sondenextraktionsprozeduren und benannte bestehende Wissenslücken („gaps in evidence“). Beide Manuskripte ergänzen sich thematisch und verfolgen das gemeinsame Ziel einer flächendeckenden qualitativ hochwertigen klinischen Versorgung sowie einer zukünftig fundierteren Aufarbeitung offenstehender wissenschaftlicher Fragen. Die gewählten Schwerpunkte adressieren explizit nicht ausschließlich Elektroden-revidierende Zentren, sondern alle in die Behandlung von CIED-Patienten involvierten Ärzte.

Der vorliegende Kommentar der Arbeitsgemeinschaft Herzrhythmusstörungen der DGTHG fasst die wesentlichen Empfehlungen der beiden Stellungnahmen zusammen, erläutert Hintergründe und diskutiert kritisch kontroverse Auffassungen.

Abstract

In the past few years two major international expert recommendations on lead management of cardiac implantable electronic devices (CIED) have been revised. Accordingly, in 2017 an expert consensus on lead management under the patronage of the Heart Rhythm Society (HRS) was published. It focused mainly on aspects of durability, malfunctions and recalls, indications for revision interventions, periprocedural management including personnel and logistic requirements for lead removal. Additionally, the recommendations on quality assurance and data management were addressed as well. Subsequently, the European Heart Rhythm Association (EHRA) published expert recommendations in 2018, which mainly dealt with the design of clinical studies and registries and requested a comprehensive analysis of lead extraction procedures and specified existing gaps in evidence. The papers complemented each other in terms of content and had a common denominator for high-quality clinical care that was based on well-supported clinical evidence. Importantly, both consensus statements address, besides lead extraction centers, explicitly all physicians involved in the treatment of CIED patients.

The present comments by the Working Group on Heart Rhythm Disorders of the German Society for Thoracic, Cardiac and Vascular Surgery (DGTHG) summarizes the most important recommendations of the two statements, explains the background and discusses critical controversies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kusumoto FM, Schoenfeld MH, Wilkoff BL, Berul CI, Birgerdotter-Green UM, Carrillo R et al (2017) 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 14:e503–e551

    PubMed  Google Scholar 

  2. Bongiorni MG, Burri H, Deharo JC, Starck C, Kennergren C, Saghy L et al (2018) 2018 EHRA expert consensus statement on lead extraction: recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: endorsed by APHRS/HRS/LAHRS. Europace 20:1217–1217

    PubMed  Google Scholar 

  3. Love CJ, Wilkoff BL, Byrd CL, Belott PH, Brinker JA, Fearnot NE et al (2000) Recommendations for extraction of chronically implanted transvenous pacing and defibrillator leads: indications, facilities, training. North American Society of Pacing and Electrophysiology Lead Extraction Conference Faculty. Pacing Clin Electrophysiol 23:544–551

    CAS  PubMed  Google Scholar 

  4. Wilkoff BL, Love CJ, Byrd CL, Bongiorni MG, Carrillo RG, Crossley GH et al (2009) Transvenous lead extraction: heart rhythm society expert consensus on facilities, training, indications, and patient management. Heart Rhythm Soc 6:1085–1104

    Google Scholar 

  5. Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB et al (2010) Update on cardiovascular Implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121:458–477

    PubMed  Google Scholar 

  6. Arnsbo P, Moller M (2000) Updated appraisal of pacing lead performance from the Danish Pacemaker Register: the reliability of bipolar pacing leads has improved. Pacing Clin Electrophysiol 23:1401–1406

    CAS  PubMed  Google Scholar 

  7. Kramer DB, Hatfield LA, McGriff D, Ellis CR, Gura MT, Samuel M et al (2015) Transvenous implantable cardioverter-defibrillator lead reliability: implications for postmarket surveillance. J Am Heart Assoc 4:e1672

    PubMed  PubMed Central  Google Scholar 

  8. Borleffs CJW, van Erven L, van Bommel RJ, van der Velde ET, van der Wall EE, Bax JJ et al (2009) Risk of failure of transvenous implantable cardioverter-defibrillator leads. Circ Arrhythmia Electrophysiol 2:411–416

    Google Scholar 

  9. Kleemann T, Becker T, Doenges K, Vater M, Senges J, Schneider S et al (2007) Annual rate of transvenous defibrillation lead defects in implantable cardioverter-defibrillators over a period of 〉10 years. Circulation 115:2474–2480

    PubMed  Google Scholar 

  10. Providência R, Kramer DB, Pimenta D, Babu GG, Hatfield LA, Ioannou A, Novak J, Hauser RG, Lambiase PD (2015) Transvenous Implantable Cardioverter-Defibrillator (ICD) Lead Performance: A Meta-Analysis of Observational Studies. J Am Heart Assoc 4(11):e002418. https://doi.org/10.1161/JAHA.115.002418. PMID: 26518666; PMCID: PMC4845221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deutschen Herzschrittmacher- und Defibrillator-Registers (2019) Jahresbericht 2017, S 1–28

    Google Scholar 

  12. Bongiorni MG, Kennergren C, Butter C, Deharo J‑C, Kutarski A, Rinaldi CA et al (2017) The European Lead Extraction ConTRolled (ELECTRa) study: a European Heart Rhythm Association (EHRA) registry of transvenous lead extraction outcomes. Eur Heart J 38:2995–3005

    PubMed  Google Scholar 

  13. Osswald B, Israel C, Burger H, Bimmel D, Siebel A, Schmid M et al (2014) Stellungnahme der Arbeitsgruppe Elektrophysiologische Chirurgie der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie zu den Empfehlungen der Deutschen Gesellschaft für Kardiologie (Arbeitsgruppe Rhythmologie) im Umgang von Patienten mit ICD-Elektroden Riata und Riata ST der Firma St. Jude Medical. Z Herz- Thorax- Gefäßchir 28:5–7

    Google Scholar 

  14. Zeitler EP, Wang Y, Dharmarajan K, Anstrom KJ, Peterson ED, Daubert JP et al (2016) Outcomes 1 year after implantable cardioverter-defibrillator lead abandonment versus explantation for unused or malfunctioning leads. Circ Arrhythm Electrophysiol 9:33

    Google Scholar 

  15. Pokorney SD, Mi X, Lewis RK, Greiner M, Epstein LM, Carrillo RG et al (2017) Outcomes associated with extraction versus capping and abandoning pacing and defibrillator leads. Circulation 136:1387–1395

    PubMed  Google Scholar 

  16. Wollmann CG, Bocker D, Löher A, Paul M, Scheld HH, Breithardt G et al (2007) Two different therapeutic strategies in ICD lead defects: additional combined lead versus replacement of the lead. J Cardiovasc Electrophysiol 18:1172–1177

    PubMed  Google Scholar 

  17. Scott PA, Chungh A, Zeb M, Yue AM, Roberts PR, Morgan JM (2010) Is the use of an additional pace/sense lead the optimal strategy for the avoidance of lead extraction in defibrillation lead failure? A single-centre experience. Europace 12:522–526

    PubMed  Google Scholar 

  18. Poole JE, Gleva MJ, Mela T, Chung MK, Uslan DZ, Borge R et al (2010) Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures. Circulation 122:1553–1561

    PubMed  Google Scholar 

  19. Krahn AD, Lee DS, Birnie D, Healey JS, Crystal E, Dorian P et al (2011) Predictors of short-term complications after implantable cardioverter-defibrillator replacement: results from the Ontario ICD database. Circ Arrhythmia Electrophysiol 4:136–142

    Google Scholar 

  20. Kramer DB, Kennedy KF, Noseworthy PA, Buxton AE, Josephson ME, Normand S‑L et al (2013) Characteristics and outcomes of patients receiving new and replacement implantable cardioverter-defibrillators. Circ Cardiovasc Qual Outcomes 6:488–497

    PubMed  Google Scholar 

  21. Borleffs CJW, Thijssen J, de Bie MK, van Rees JB, van Welsenes GH, van Erven L et al (2010) Recurrent implantable cardioverter-defibrillator replacement is associated with an increasing risk of pocket-related complications. Pacing Clin Electrophysiol 33:1013–1019

    PubMed  Google Scholar 

  22. Adabag S, Patton KK, Buxton AE, Rector TS, Ensrud KE, Vakil K et al (2017) Association of implantable cardioverter defibrillators with survival in patients with and without improved ejection fraction: secondary analysis of the sudden cardiac death in heart failure trial. JAMA Cardiol 2:767–774

    PubMed  PubMed Central  Google Scholar 

  23. de Oliveira JC, Martinelli M, Nishioka SAD, Varejao T, Uipe D, Pedrosa AAA et al (2009) Efficacy of antibiotic prophylaxis before the implantation of pacemakers and cardioverter-defibrillators: results of a large, prospective, randomized, double-blinded, placebo-controlled trial. Circ Arrhythmia Electrophysiol 2:29–34

    Google Scholar 

  24. Darouiche R, Mosier M, Voigt J (2012) Antibiotics and antiseptics to prevent infection in cardiac rhythm management device implantation surgery. Pacing Clin Electrophysiol 35:1348–1360

    PubMed  Google Scholar 

  25. Kaya E, Totzeck M, Rassaf T (2017) Pulsed electron avalanche knife (PEAK) PlasmaBlade™ in pacemaker and defibrillator procedures. Eur J Med Res Biomed Cent 22:1–5

    Google Scholar 

  26. Sohail MR, Uslan DZ, Khan AH, Friedman PA, Hayes DL, Wilson WR et al (2007) Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J Am Coll Cardiol 49:1851–1859

    PubMed  Google Scholar 

  27. Klug D, Wallet F, Lacroix D, Marquie C, Kouakam C, Kacet S et al (2004) Local symptoms at the site of pacemaker implantation indicate latent systemic infection. Heart 90:882–886

    CAS  PubMed  PubMed Central  Google Scholar 

  28. del Rio A, Anguera I, Miro JM, Mont L (2003) Surgical treatment of pacemaker and defibrillator lead endocarditis: the impact of electrode lead extraction on outcome. Chest 124:1451–1459

    PubMed  Google Scholar 

  29. Athan E, Chu VH, Tattevin P, Selton-Suty C, Jones P, Naber C et al (2012) Clinical characteristics and outcome of infective endocarditis involving implantable cardiac devices. JAMA 307:1727–1735

    CAS  PubMed  Google Scholar 

  30. Lindner O (2020) Nuklearmedizinische Bildgebung bei infektiöser Endokarditis und Device-Infektionen. Nuklearmediziner 43:47–56

    Google Scholar 

  31. Lindner O, Bauersachs J, Bengel F et al (2018) Positionspapier Nuklearkardiologie – Update 2018. Kardiologe 12:303–311

    Google Scholar 

  32. Viganego F, O’Donoghue S, Eldadah Z, Shah MH, Rastogi M, Mazel JA et al (2012) Effect of early diagnosis and treatment with percutaneous lead extraction on survival in patients with cardiac device infections. Am J Cardiol 109:1466–1471

    PubMed  Google Scholar 

  33. Ghaffari N, Arslan I, Stahlhut P et al (2018) Die „Opferelektrode“. Herz 43:617–620. https://doi.org/10.1007/s00059-018-4749-4

    Article  CAS  PubMed  Google Scholar 

  34. Burger H, Pecha S, Hakmi S, Opalka B, Schoenburg M, Ziegelhoeffer T (2020) Five-year follow-up of transvenous and epicardial left-ventricular leads: Experience with more than one thousand leads. Interact CardioVasc Thorac Surg 30:74–80

    PubMed  Google Scholar 

  35. Fu H‑X, Huang X‑M, Zhong L, Osborn MJ, Bjarnason H, Mulpuru S et al (2014) Outcome and management of pacemaker-induced superior vena cava syndrome. Pacing Clin Electrophysiol 37:1470–1476

    PubMed  Google Scholar 

  36. Riley RF, Petersen SE, Ferguson JD, Bashir Y (2010) Managing superior vena cava syndrome as a complication of pacemaker implantation: a pooled analysis of clinical practice. Pacing Clin Electrophysiol 33:420–425

    PubMed  Google Scholar 

  37. Mendenhall GS, Saba S (2014) Prophylactic lead extraction at implantable cardioverter-defibrillator generator change. Circ Arrhythmia Electrophysiol 7:330–336

    CAS  Google Scholar 

  38. Nazarian S, Hansford R, Rahsepar AA, Weltin V, McVeigh D, Gucuk Ipek E et al (2017) Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med 377:2555–2564

    PubMed  PubMed Central  Google Scholar 

  39. Mazine A, Bouchard D, Moss E, Marquis-Gravel G, Perrault LP, Demers P et al (2013) Transvalvular pacemaker leads increase the recurrence of regurgitation after tricuspid valve repair. Ann Thorac Surg 96:816–822

    PubMed  Google Scholar 

  40. Starck CT, Eulert-Grehn J, Kukucka M, Eggert-Doktor D, Dreizler T, Haupt B et al (2018) Managing large lead vegetations in transvenous lead extractions using a percutaneous aspiration technique. Expert Rev Med Devices 15:757–761

    CAS  PubMed  Google Scholar 

  41. Schaerf RHM, Najibi S, Conrad J (2016) Percutaneous Vacuum-Assisted Thrombectomy Device Used for Removal of Large Vegetations on Infected Pacemaker and Defibrillator Leads as an Adjunct to Lead Extraction. J Atr Fibrillation. 9(3):1455. https://doi.org/10.4022/jafib.1455. PMID: 28496930; PMCID: PMC5368550

    Article  PubMed  PubMed Central  Google Scholar 

  42. Starck CT, Schaerf RHM, Breitenstein A, Najibi S, Conrad J, Berendt J et al (2020) Transcatheter aspiration of large pacemaker and implantable cardioverter-defibrillator lead vegetations facilitating safe transvenous lead extraction. Europace 22:133–138

    PubMed  Google Scholar 

  43. Franceschi F, Dubuc M, Deharo J‑C, Mancini J, Page P, Thibault B et al (2011) Extraction of transvenous leads in the operating room versus electrophysiology laboratory: a comparative study. Heart Rhythm 8:1001–1005

    PubMed  Google Scholar 

  44. Brunner MP, Cronin EM, Wazni O, Baranowski B, Saliba WI, Sabik JF et al (2014) Outcomes of patients requiring emergent surgical or endovascular intervention for catastrophic complications during transvenous lead extraction. Heart Rhythm 11:419–425

    PubMed  Google Scholar 

  45. Maytin M, Daily TP, Carillo RG (2015) Virtual reality lead extraction as a method for training new physicians: a pilot study. Pacing Clin Electrophysiol 38:319–325

    PubMed  Google Scholar 

  46. Amraoui S, Tlili G, Sohal M, Berte B, Hindie E, Ritter P et al (2016) Contribution of PET imaging to the diagnosis of septic embolism in patients with pacing lead endocarditis. JACC Cardiovasc Imaging 9:283–290

    PubMed  Google Scholar 

  47. Amraoui S, Tlili G, Hindie E, Perez P, Peuchant O, Bordenave L et al (2016) Accuracy of positron emission tomography as a diagnostic tool for lead endocarditis: design of the prospective multicentre ENDOTEP study. Eur J Cardiol 11:25–28

    Google Scholar 

  48. Nandyala R, Parsonnet V (2006) One stage side-to-side replacement of infected pulse generators and leads. Pacing Clin Electrophysiol 29:393–396

    PubMed  Google Scholar 

  49. Amelot M, Foucault A, Scanu P, Gomes S, Champ-Rigot L, Pellissier A et al (2011) Comparison of outcomes in patients with abandoned versus extracted implantable cardioverter defibrillator leads. Arch Cardiovasc Dis 104:572–577

    PubMed  Google Scholar 

  50. Rijal S, Shah RU, Saba S (2015) Extracting versus abandoning sterile pacemaker and defibrillator leads. Am J Cardiol 115:1107–1110

    PubMed  Google Scholar 

  51. Suga C, Hayes DL, Hyberger LK, Lloyd MA (2000) Is there an adverse outcome from abandoned pacing leads? J Interv Card Electrophysiol 4:493–499

    CAS  PubMed  Google Scholar 

  52. Silvetti MS, Drago F (2008) Outcome of young patients with abandoned, nonfunctional endocardial leads. Pacing Clin Electrophysiol 31:473–479

    PubMed  Google Scholar 

  53. Glikson M, Suleiman M, Luria DM, Martin ML, Hodge DO, Shen W‑K et al (2009) Do abandoned leads pose risk to implantable cardioverter-defibrillator patients? Heart Rhythm 6:65–68

    PubMed  Google Scholar 

  54. Brunner MP, Yu C, Hussein AA, Tarakji KG, Wazni OM, Kattan MW et al (2015) Nomogram for predicting 30-day all-cause mortality after transvenous pacemaker and defibrillator lead extraction. Heart Rhythm 12:2381–2386

    PubMed  Google Scholar 

  55. Burger H, Schmitt J, Knaut M, Eitz T, Starck CT, Hakmi S, Siebel A, Böning A (2018) Einsatz des tragbaren Kardioverter-Defibrillators nach kardiochirurgischen Eingriffen. Positionspapier der AG Herzrhythmusstörungen der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie. Z Herz- Thorax- Gefäßchir 32:286–299

    Google Scholar 

  56. Ratschiller T, Guenther T, Knappich C, Guenzinger R, Kehl V, Voss B, Lange R (2015) Do transvascular pacemaker leads influence functional outcome after tricuspid ring annuloplasty? Eur J Cardiothorac Surg 48(3):363–369

    PubMed  Google Scholar 

  57. Chew D, Somayaji R, Conly J, Exner D, Rennert-May E (2019) Timing of device reimplantation and reinfection rates following cardiac implantable electronic device infection: a systemic review and meta-analysis. BMJ Open 9(9):e29537

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. T. Starck or H. Burger.

Ethics declarations

Interessenkonflikt

C.T. Starck, H. Burger, B. Osswald, S. Hakmi, M. Knaut, D. Bimmel, V. Bärsch, T. Eitz, M. Mierzwa, N. Ghaffari und A. Siebel geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren C.T. Starck und H. Burger haben zu gleichen Teilen zum Manuskript beigetragen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starck, C.T., Burger, H., Osswald, B. et al. HRS-Expertenkonsensus (2017) Sondenmanagement und -extraktion von kardialen elektronischen Implantaten sowie EHRA-Expertenkonsensus (2018) zur wissenschaftlichen Aufarbeitung von Sondenextraktionen. Z Herz- Thorax- Gefäßchir 35, 103–118 (2021). https://doi.org/10.1007/s00398-021-00421-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-021-00421-6

Schlüsselwörter

Keywords

Navigation