Skip to main content
Log in

Neuromonitoring in der Kardioanästhesie

Gemeinsame Stellungnahme der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI), Schweizerischen Gesellschaft für Anästhesiologie und Reanimation (SGAR) und Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG)

Neuromonitoring in cardiac anesthesia

Joint statement of the German Society of Anesthesiology and Intensive Care Medicine (DGAI), the Swiss Society for Anesthesiology and Resuscitation (SGAR) and the German Society for Thoracic and Cardiovascular Surgery (DGTHG)

  • Evidenzbasierte Medizin
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

An Erratum to this article was published on 12 August 2015

Zusammenfassung

Herzchirurgische Eingriffe sind nicht selten mit neurologischen Komplikationen verbunden. Die Ziele des Neuromonitorings in der Kardioanästhesie liegen in der Vermeidung derartiger Komplikationen, zum Beispiel durch die Detektion zerebraler Ischämien, die Erkennung einer inadäquaten Narkosetiefe oder die Überwachung von neuroprotektiven Maßnahmen. DGAI, DGTHG und SGAR empfehlen für die Herzchirurgie den Einsatz eines prozessierten EEGs bei totalintravenöser Anästhesie, bei tiefem hypothermem Kreislaufstillstand sowie bei Risikopatienten für Awareness. Bei Karotis-Thrombendartektomien wird die Ableitung von somatosensiblen Potenzialen (SSEP) als Verfahren der ersten Wahl angeraten. Falls ein SSEP-Gerät nicht zur Verfügung steht, wird die Anwendung der Nahinfrarotspektroskopie (NIRS) als Verfahren der zweiten Wahl empfohlen, wobei keine allgemein akzeptierten Grenzwerte für eine Shunt-Einlage vorliegen. Motorisch evozierte Potenziale sollten bei Operationen an der thorakalen Aorta descendens abgeleitet werden. Die beteiligten Gesellschaften sprechen sich für den Einsatz von NIRS zur Erkennung einer fehlerhaften Kanülenlage bei der Korrektur angeborener Herzfehler im Kindesalter sowie bei Operationen am Aortenbogen bei Kindern und Erwachsenen aus. Im Sinne einer Expertenmeinung wird die Anwendung von NIRS empfohlen bei Patienten mit stattgehabtem Apoplex, schwerer arterieller Hypertonie, hochgradigen Karotisstenosen sowie bei Herz- oder Lungentransplantationen.

Abstract

It is not uncommon for cardiac surgery to be associated with neurological complications. The aim of monitoring in cardiac anesthesia is the avoidance of such complications, e.g. by the detection of cerebral ischemia, recognition of an inadequate depth of anesthesia and surveillance of neuroprotective measures. For cardiac surgery the German Society of Anesthesiology and Intensive Care Medicine (Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin, DGAI), the German Society for Thoracic and Cardiovascular Surgery (Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie, DGTHG) and the Swiss Society for Anesthesiology and Resuscitation (Schweizerische Gesellschaft für Anästhesiologie und Reanimation, SGAR) recommend the use of processed electroencephalographs (EEG) for total intravenous anesthesia, for deep hypothermic cardiac arrest and in patients at risk for awareness. In carotid thromboendartectomy the afferent conduction of somatosensory evoked potentials (SSEP) is recommended as the method of choice. If an SSEP device is unavailable near-infrared spectroscopy (NIRS) is recommended as the second choice procedure, whereby no generally acceptable cut-off values for a shunt placement are available. Motor evoked potentials should be utilized in operations on the thoracic descending aorta. The participating societies are in favor of using NIRS for detection of an incorrectly placed cannula during correction of congenital heart defects in childhood and in operations on the aortic arch in children and adults. In the sense of an expert opinion, the use of NIRS is recommended for patients who have suffered an apoplexy, severe arterial hypertension, high-grade carotid artery stenosis as well as for heart or lung transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Newman MF, Croughwell ND, Blumenthal JA et al (1994) Effect of aging on cerebral autoregulation during cardiopulmonary bypass. Association with postoperative cognitive dysfunction. Circulation 90(5 Pt 2):II243–II249

    CAS  PubMed  Google Scholar 

  2. Rudolph JL, Schreiber KA, Culley DJ et al (2010) Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand 54(6):663–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Funder KS, Steinmetz J, Rasmussen LS (2009) Cognitive dysfunction after cardiovascular surgery. Minerva Anestesiol 75(5):329–332

    CAS  PubMed  Google Scholar 

  4. McKhann GM, Grega MA, Borowicz LM Jr et al (2006) Stroke and encephalopathy after cardiac surgery: an update. Stroke 37(2):562–571

    Article  PubMed  Google Scholar 

  5. Wolman RL, Nussmeier NA, Aggarwal A et al (1999) Cerebral injury after cardiac surgery: identification of a group at extraordinary risk. Multicenter Study of Perioperative Ischemia Research Group (McSPI) and the Ischemia Research Education Foundation (IREF) Investigators. Stroke 30(3):514–522

    Article  CAS  PubMed  Google Scholar 

  6. Naylor AR, Mehta Z, Rothwell PM, Bell PR (2002) Carotid artery disease and stroke during coronary artery bypass: a critical review of the literature. Eur J Vasc Endovasc Surg 23(4):283–294

    Article  CAS  PubMed  Google Scholar 

  7. Roach GW, Kanchuger M, Mangano CM et al (1996) Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med 335(25):1857–1863

    Article  CAS  PubMed  Google Scholar 

  8. Gottesman RF, Sherman PM, Grega MA et al (2006) Watershed strokes after cardiac surgery: diagnosis, etiology, and outcome. Stroke 37(9):2306–2311

    Article  PubMed  Google Scholar 

  9. Edmonds HL Jr (2005) Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci 1053:12–19

    Article  PubMed  Google Scholar 

  10. Goldman S, Sutter F, Ferdinand F, Trace C (2004) Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 7(5):E376–E381

    Article  PubMed  Google Scholar 

  11. Murkin JM, Adams SJ, Novick RJ et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104(1):51–58

    Article  PubMed  Google Scholar 

  12. Slater JP, Guarino T, Stack J et al (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87(1):36–44

    Article  PubMed  Google Scholar 

  13. Fitch W (2000) Brain metabolism. In: Cottrell JE, Smith DS (Hrsg) Anesthesia and neurosurgery, 4. Aufl. Mosby, St. Louis, S 1–16

  14. Soehle M (2012) Cerebral ischemia: options for perioperative neuroprotection. In: Brambrink AM, Kirsch JR (Hrsg) Essentials of neurosurgical anesthesia & critical care. Strategies for prevention, early detection, and successful management of perioperative complications. Springer, Berlin Heidelberg New York Tokio, S 175–184

  15. Lassen NA, Astrup J (1990) Cerebral blood flow: normal regulation and ischemic thresholds. In: Weinstein PR, Faden AI (Hrsg) Protection of the brain from ischemia. Williams & Wilkins, Baltimore

  16. Bowler JV (2000) Cerebral blood flow. In: Crockard A, Hayward R, Hoff JT (Hrsg) Neurosurgery. The scientific basis of clinical practice, 3. Aufl. Blackwell, Oxford, S 127–141

  17. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1):45–52

    Article  CAS  PubMed  Google Scholar 

  18. Drummond JC (1997) The lower limit of autoregulation: time to revise our thinking? Anesthesiology 86(6):1431–1433

    Article  CAS  PubMed  Google Scholar 

  19. Joshi B, Ono M, Brown C et al (2012) Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg 114(3):503–510

    Article  PubMed Central  PubMed  Google Scholar 

  20. Schoof J, Lubahn W, Baeumer M et al (2007) Impaired cerebral autoregulation distal to carotid stenosis/occlusion is associated with increased risk of stroke at cardiac surgery with cardiopulmonary bypass. J Thorac Cardiovasc Surg 134(3):690–696

    Article  PubMed  Google Scholar 

  21. White RP, Markus HS (1997) Impaired dynamic cerebral autoregulation in carotid artery stenosis. Stroke 28(7):1340–1344

    Article  CAS  PubMed  Google Scholar 

  22. Ono M, Joshi B, Brady K et al (2012) Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesth 109(3):391–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Joshi B, Brady K, Lee J et al (2010) Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg 110(2):321–328

    Article  PubMed  Google Scholar 

  24. Cook DJ, Proper JA, Orszulak TA et al (1997) Effect of pump flow rate on cerebral blood flow during hypothermic cardiopulmonary bypass in adults. J Cardiothorac Vasc Anesth 11(4):415–419

    Article  CAS  PubMed  Google Scholar 

  25. Nuttall GA, Cook DJ, Fulgham JR et al (1996) The relationship between cerebral blood flow and transcranial Doppler blood flow velocity during hypothermic cardiopulmonary bypass in adults. Anesth Analg 82(6):1146–1151

    CAS  PubMed  Google Scholar 

  26. Rogers AT, Prough DS, Roy RC et al (1992) Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man. J Thorac Cardiovasc Surg 103(2):363–368

    CAS  PubMed  Google Scholar 

  27. Aladj LJ, Croughwell N, Smith LR, Reves JG (1991) Cerebral blood flow autoregulation is preserved during cardiopulmonary bypass in isoflurane-anesthetized patients. Anesth Analg 72(1):48–52

    Article  CAS  PubMed  Google Scholar 

  28. Venn GE, Sherry K, Klinger L et al (1988) Cerebral blood flow during cardiopulmonary bypass. Eur J Cardiothorac Surg 2(5):360–363

    Article  CAS  PubMed  Google Scholar 

  29. Stephan H, Weyland A, Kazmaier S et al (1992) Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br J Anaesth 69(1):51–57

    Article  CAS  PubMed  Google Scholar 

  30. Newman MF, Murkin JM, Roach G et al (1995) Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS Subgroup of McSPI. Anesth Analg 81(3):452–457

    CAS  PubMed  Google Scholar 

  31. Taylor KM (1998) Central nervous system effects of cardiopulmonary bypass. Ann Thorac Surg 66(5 Suppl):S20–S24

    Article  CAS  PubMed  Google Scholar 

  32. Foreman B, Claassen J (2012) Quantitative EEG for the detection of brain ischemia. Crit Care 16(2):216

    Article  PubMed Central  PubMed  Google Scholar 

  33. Billard V (2001) Brain injury under general anesthesia: is monitoring of the EEG helpful? Can J Anaesth 48(11):1055–1060

    Article  CAS  PubMed  Google Scholar 

  34. o A (2000)The Brain Trauma Foundation. The American Association of Neurological Surgeons. The joint section on neurotrauma and critical care. Use of barbiturates in the control of intracranial hypertension. J Neurotrauma 17(6–7):527–530

  35. Zaidan JR, Klochany A, Martin WM et al (1991) Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 74(3):406–411

    Article  CAS  PubMed  Google Scholar 

  36. Winer JW, Rosenwasser RH, Jimenez F (1991) Electroencephalographic activity and serum and cerebrospinal fluid pentobarbital levels in determining the therapeutic end point during barbiturate coma. Neurosurgery 29(5):739–741

    Article  CAS  PubMed  Google Scholar 

  37. Ploppa A, Kiefer RT, Nohe B et al (2006) Dose-dependent influence of barbiturates but not of propofol on human leukocyte phagocytosis of viable Staphylococcus aureus. Crit Care Med 34(2):478–483

    Article  CAS  PubMed  Google Scholar 

  38. Cottenceau V, Petit L, Masson F et al (2008) The use of bispectral index to monitor barbiturate coma in severely brain-injured patients with refractory intracranial hypertension. Anesth Analg 107(5):1676–1682

    Article  PubMed  Google Scholar 

  39. Rampil IJ (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89(4):980–1002

    Article  CAS  PubMed  Google Scholar 

  40. Kertai MD, Whitlock EL, Avidan MS (2012) Brain monitoring with electroencephalography and the electroencephalogram-derived bispectral index during cardiac surgery. Anesth Analg 114(3):533–546

    Article  PubMed Central  PubMed  Google Scholar 

  41. Myles PS, Leslie K, McNeil J et al (2004) Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet 363:1757–1763

    Article  CAS  PubMed  Google Scholar 

  42. Avidan MS, Jacobsohn E, Glick D et al (2011) Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med 365(7):591–600

    Article  CAS  PubMed  Google Scholar 

  43. Avidan MS, Zhang L, Burnside BA et al (2008) Anesthesia awareness and the bispectral index. N Engl J Med 358(11):1097–1108

    Article  CAS  PubMed  Google Scholar 

  44. Kertai MD, Pal N, Palanca BJ et al (2010) Association of perioperative risk factors and cumulative duration of low bispectral index with intermediate-term mortality after cardiac surgery in the B-Unaware Trial. Anesthesiology 112(5):1116–1127

    Article  PubMed  Google Scholar 

  45. Leslie K, Myles PS, Forbes A, Chan MT (2010) The effect of bispectral index monitoring on long-term survival in the B-aware trial. Anesth Analg 110(3):816–822

    Article  PubMed  Google Scholar 

  46. Lindholm ML, Traff S, Granath F et al (2009) Mortality within 2 years after surgery in relation to low intraoperative bispectral index values and preexisting malignant disease. Anesth Analg 108(2):508–512

    Article  PubMed  Google Scholar 

  47. Monk TG, Saini V, Weldon BC, Sigl JC (2005) Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 100(1):4–10

    Article  PubMed  Google Scholar 

  48. Sessler DI, Sigl JC, Kelley SD et al (2012) Hospital stay and mortality are increased in patients having a „triple low“ of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology 116(6):1195–1203

    Article  PubMed  Google Scholar 

  49. Chan MT, Cheng BC, Lee TM, Gin T (2013) BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol 25(1):33–42

    Article  PubMed  Google Scholar 

  50. Radtke FM, Franck M, Lendner J et al (2013) Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 110(Suppl 1):i98–i105

    Article  CAS  PubMed  Google Scholar 

  51. National Institute for Health and Clinical Excellence. Depth of anaesthesia monitors – Bispectral Index (BIS), E-Entropy and Narcotrend-Compact M, 2012. http://guidance.nice.org.uk/DG6

  52. Hayashida M, Sekiyama H, Orii R et al (2007) Effects of deep hypothermic circulatory arrest with retrograde cerebral perfusion on electroencephalographic bispectral index and suppression ratio. J Cardiothorac Vasc Anesth 21(1):61–67

    Article  PubMed  Google Scholar 

  53. Schirmer U (2007) Hypothermie in der Herzchirurgie. Anaesthesist 56(9):930–935

    Article  CAS  PubMed  Google Scholar 

  54. Mathew JP, Weatherwax KJ, East CJ et al (2001) Bispectral analysis during cardiopulmonary bypass: the effect of hypothermia on the hypnotic state. J Clin Anesth 13(4):301–305

    Article  CAS  PubMed  Google Scholar 

  55. Ziegeler S, Buchinger H, Wilhelm W et al (2010) Impact of deep hypothermic circulatory arrest on the BIS index. J Clin Anesth 22(5):340–345

    Article  PubMed  Google Scholar 

  56. Stecker MM, Cheung AT, Pochettino A et al (2001) Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg 71(1):14–21

    Article  CAS  PubMed  Google Scholar 

  57. James ML, Andersen ND, Swaminathan M et al (2013) Predictors of electrocerebral inactivity with deep hypothermia. J Thorac Cardiovasc Surg 147(3):1002–1007

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hohlrieder M, Kaufmann M, Moritz M, Wenzel V (2007) Management der akzidentellen Hypothermie. Anaesthesist 56(8):805–811

    Article  CAS  PubMed  Google Scholar 

  59. Dinkel M, Kamp HD, Schweiger H (1991) Somatosensorisch evozierte Potentiale in der Karotischirurgie. Anaesthesist 40:72–78

    CAS  PubMed  Google Scholar 

  60. Lang W, Dinkel M (2000) Zerebrale Ischamie wahrend des Carotis-clampings. Diagnostik und Vermeidung. Zentralbl Chir 125(3):243–250

    CAS  PubMed  Google Scholar 

  61. Wissenschaftlicher Arbeitskreis Neuroanästhesie (2007) Neuromonitoring in Anästhesie und Intensivmedizin – Empfehlungen für eine berufsbegleitende modulare Fortbildung und Zertifizierung. Anaesth Intensivmed 48:48–54

    Google Scholar 

  62. Stecker MM (2004) Evoked potentials during cardiac and major vascular operations. Semin Cardiothorac Vasc Anesth 8(2):101–111

    Article  PubMed  Google Scholar 

  63. Malcharek MJ, Ulkatan S, Marino V et al (2012) Intraoperative monitoring of carotid endarterectomy by transcranial motor evoked potential: a multicenter study of 600 patients. Clin Neurophysiol 124(5):1025–1030

    Article  PubMed  Google Scholar 

  64. Sloan TB (1998) Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol 15(3):217–226

    Article  CAS  PubMed  Google Scholar 

  65. Wang AC, Than KD, Etame AB et al (2009) Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus 27(4):E7

    Article  PubMed  Google Scholar 

  66. Jacobs MJ, Mess W, Mochtar B et al (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43(2):239–246

    Article  PubMed  Google Scholar 

  67. Andrews PJ, Dearden NM, Miller JD (1991) Jugular bulb cannulation: description of a cannulation technique and validation of a new continuous monitor. Br J Anaesth 67(5):553–558

    Article  CAS  PubMed  Google Scholar 

  68. Menzel M (2003) Anwendung der kontinuierlichen Blutgasanalyse und der Temperaturmessung im Hirngewebe sowie im zerebrovenösen Blut nach neuronaler Schädigung – experimentelle und klinische Untersuchungen zu einem multimodalen Überwachungskonzept. Soukup & Zarski, Halle/Saale

  69. Shaaban Ali M, Harmer M, Latto I (2001) Jugular bulb oximetry during cardiac surgery. Anaesthesia 56(1):24–37

    Article  Google Scholar 

  70. De Deyne C, Decruyenaere J, Colardyn F (1996) How to interpret jugular bulb oximetry? In: Vincent JL (Hrsg) Yearbook of intensive care and emergency medicine. Springer-Verlag, Berlin, S 731–741

  71. Croughwell ND, Newman MF, Blumenthal JA et al (1994) Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Ann Thorac Surg 58(6):1702–1708

    Article  CAS  PubMed  Google Scholar 

  72. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116(4):834–840

    Article  CAS  PubMed  Google Scholar 

  73. Kim MB, Ward DS, Cartwright CR et al (2000) Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput 16(3):191–199

    Article  CAS  PubMed  Google Scholar 

  74. Casati A, Fanelli G, Pietropaoli P et al (2005) Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 101(3):740–747

    Article  PubMed  Google Scholar 

  75. Heringlake M, Garbers C, Kabler JH et al (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114(1):58–69

    Article  PubMed  Google Scholar 

  76. Paquet C, Deschamps A, Denault AY et al (2008) Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J Cardiothorac Vasc Anesth 22(6):840–846

    Article  PubMed  Google Scholar 

  77. Apostolidou I, Morrissette G, Sarwar MF et al (2012) Cerebral oximetry during cardiac surgery: the association between cerebral oxygen saturation and perioperative patient variables. J Cardiothorac Vasc Anesth 26(6):1015–1021

    Article  PubMed  Google Scholar 

  78. Schön J, Paarmann H, Heringlake M (2012) Zerebrale Oxymetrie: Klinischer Stellenwert bei kardiochirurgischen Patienten. Anaesthesist 61(11):934–940

    Article  PubMed  Google Scholar 

  79. Schön J, Husemann L, Tiemeyer C et al (2011) Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth 106(6):840–850

    Article  Google Scholar 

  80. Moritz S, Kasprzak P, Arlt M et al (2007) Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 107(4):563–569

    Article  PubMed  Google Scholar 

  81. Tournay-Jette E de, Dupuis G, Bherer L et al (2011) The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25(1):95–104

    Article  PubMed  Google Scholar 

  82. Yao FS, Tseng CC, Ho CY et al (2004) Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 18(5):552–558

    Article  PubMed  Google Scholar 

  83. Mohandas BS, Jagadeesh AM, Vikram SB (2013) Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Card Anaesth 16(2):102–106

    Article  CAS  PubMed  Google Scholar 

  84. Denault A, Deschamps A, Murkin JM (2007) A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth 11(4):274–281

    PubMed  Google Scholar 

  85. Gottlieb EA, Fraser CD Jr, Andropoulos DB, Diaz LK (2006) Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth 16(7):787–789

    Article  PubMed  Google Scholar 

  86. Scholl FG, Webb D, Christian K, Drinkwater DC (2006) Rapid diagnosis of cannula migration by cerebral oximetry in neonatal arch repair. Ann Thorac Surg 82(1):325–327

    Article  PubMed  Google Scholar 

  87. Paarmann H, Schön J, Heinze H et al (2009) Bilateral monitoring of cerebral oxygen saturation results in recognition of selective cerebral perfusion cannula malposition during aortic arch surgery. Appl Cardiopulm Pathophysiol 13(2):191

    Google Scholar 

  88. Redlin M, Boettcher W, Huebler M et al (2006) Detection of lower torso ischemia by near-infrared spectroscopy during cardiopulmonary bypass in a 6.8-kg infant with complex aortic anatomy. Ann Thorac Surg 82(1):323–325

    Article  PubMed  Google Scholar 

  89. Kussman BD, Wypij D, Laussen PC et al (2010) Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation 122(3):245–254

    Article  PubMed Central  PubMed  Google Scholar 

  90. Orihashi K, Sueda T, Okada K, Imai K (2005) Malposition of selective cerebral perfusion catheter is not a rare event. Eur J Cardiothorac Surg 27(4):644–648

    Article  PubMed  Google Scholar 

  91. Zheng F, Sheinberg R, Yee MS et al (2013) Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg 116(3):663–676

    Article  PubMed  Google Scholar 

  92. Harrer M, Waldenberger FR, Weiss G et al (2010) Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectroscopy. Eur J Cardiothorac Surg 38(5):561–567

    Article  PubMed  Google Scholar 

  93. Basciani RM, Jenni H, Czerny M et al (2013) Selective antegrade perfusion: effect of increasing flow rate on cerebral oxygen saturation and transcranial Doppler flow velocity. Appl Cardiopulm Pathophysiol 2013 (Suppl 1):O-61

    Google Scholar 

  94. Aaslid R (1992)Developments and principles of transcranial Doppler. In: Newell DW, Aaslid R (Hrsg) Transcranial Doppler. Raven, New York, S 1–8

  95. Fujioka KA, Douville CM (1992) Anatomy and freehand examination technique. In: Newell DW, Aaslid R, editors. Transcranial Doppler. Raven, New York, S 9–31

  96. Kahn RA, Slogoff FB, Reich DL, Konstadt SN (1995) Transcranial Doppler ultrasonography: what is its role in cardiac and vascular surgical patients? J Cardiothorac Vasc Anesth 9(5):589–597

    Article  CAS  PubMed  Google Scholar 

  97. Kirkpatrick PJ, Lam J, Al-Rawi P et al (1998) Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg 89(3):389–394

    Article  CAS  PubMed  Google Scholar 

  98. Doblar DD (2004) Intraoperative transcranial ultrasonic monitoring for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 8(2):127–145

    Article  PubMed  Google Scholar 

  99. Saidi N, Murkin JM (2005) Applied neuromonitoring in cardiac surgery: patient specific management. Semin Cardiothorac Vasc Anesth 9(1):17–23

    Article  PubMed  Google Scholar 

  100. Sliwka U, Diehl RR, Noth J (1995) Bedeutung sogenannter „High-Intensity Transient Signals“ (HITS) wahrend der transkraniellen Dopplersonographie. Dtsch Med Wochenschr 120(48):1667–1670

    Article  CAS  PubMed  Google Scholar 

  101. Rodriguez RA, Rubens FD, Wozny D, Nathan HJ (2010) Cerebral emboli detected by transcranial Doppler during cardiopulmonary bypass are not correlated with postoperative cognitive deficits. Stroke 41(10):2229–2235

    Article  PubMed  Google Scholar 

  102. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 31(10):1925–1938

    Article  CAS  Google Scholar 

  103. Arning C, Widder B, Reutern GM von et al (2010) Ultraschallkriterien zur Graduierung von Stenosen der A. carotis interna – Revision der DEGUM-Kriterien und Transfer in NASCET-Stenosierungsgrade. Ultraschall Med 31(3):251–257

    Article  CAS  PubMed  Google Scholar 

  104. Milnik V (2012) Elektrophysiologie in der Praxis, 2. Aufl. Elsevier, München

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt.

Für den Wissenschaftlichen Arbeitskreis Kardioanästhesie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI):

  • I. Brandes: kein Interessenkonflikt,

  • M. Heringlake hat Forschungsunterstützung und Vortragshonorare von der Fa. Covidien erhalten,

  • A. Koster: kein Interessenkonflikt,

  • P. Michels: kein Interessenkonflikt,

  • U. Schirmer: kein Interessenkonflikt.

Für den Wissenschaftlichen Arbeitskreis Neuroanästhesie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI):

  • M. Dinkel hat Vortragshonorare von den Firmen Inomed und Medtronic erhalten,

  • M. Menzel: kein Interessenkonflikt,

  • P. Michels: s. oben (kein Interessenkonflikt),

  • L. Schaffranietz: kein Interessenkonflikt,

  • G. Schneider: kein Interessenkonflikt,

  • M. Söhle hat Forschungsunterstützung und Vortragshonorare von der Fa. Covidien erhalten.

Für die Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG):

  • I. Eichler: kein Interessenkonflikt,

  • A. Markewitz: kein Interessenkonflikt.

Für die Cardiovascular and Thoracic Anaesthesia Group (CTA) der Schweizerischen Gesellschaft für Anästhesiologie und Reanimation (SGAR):

  • R. Basciani hat Vortragshonorare von den Firmen Covidien und Medtronic erhalten.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Consortia

Additional information

Dieser Beitrag ist erstpubliziert in „Anaesth Intensivmed 2014;55:521–538, mit freundlicher Genehmigung der Aktiv Druck &Verlag GmbH“.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI), Schweizerische Gesellschaft für Anästhesiologie und Reanimation (SGAR), Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG). Neuromonitoring in der Kardioanästhesie. Z Herz- Thorax- Gefäßchir 28, 430–447 (2014). https://doi.org/10.1007/s00398-014-1125-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-014-1125-4

Schlüsselwörter

Keywords

Navigation