Skip to main content
Log in

Probing the elongational rheological behaviour at interfaces of immiscible polymer melts using dilational tensiometry: effect of viscosity and temperature on the interfacial properties

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Interfacial rheology has become a powerful tool to study the viscoelastic properties of interfaces in several multiphase polymer-based systems such as multilayer liquids containing surfactants, proteins or solid particles, and also in polymer blends, 3D printed multimaterials and coextruded multilayer films. During all these manufacturing processes, the elongational flow at interface is predominant. Nevertheless, direct interfacial rheological measurements in extension devoted to such polymer systems are not plentiful and are often based on indirect modelling methods. In the present work, interfacial dilational rheology testing based on the rising oscillating drop method was used to probe surface (and interfacial) properties of model Newtonian polymer melts: polydimethylsiloxane (PDMS)/polyisobutylene (PIB) systems. The interfacial properties in both oscillatory and static drop experiments were carefully corrected, considering the inertia and the contribution of the coexisting phase viscosities during the processing of the numerical data. The influence of molecular weight and temperature on the interfacial rheological responses was particularly examined. A new approach was developed to determine the dilational relaxation times (τ) of the studied polymer systems using a square pulse relaxation test. It was found that the evolution of τ with the temperature followed an Arrhenius behaviour. A comparison with capillary breakup extensional rheometry revealed similar overall values to those obtained with the pulse method. Finally, using interfacial shear rheology, we focused on the Trouton correlation between shear and dilational surface rheology, and a direct link between shear surface viscosities and elongational relaxation times was evidenced for the first time and over the entire viscosity range studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alexandrov N, Marinova KG, Danov KD, Ivanov IB (2009) Surface dilatational rheology measurements for oil/water systems with viscous oils. J Colloid Interface Sci 339(2):545–550

    Article  CAS  Google Scholar 

  • Anderssen RS, Husain SA, Loy R (2003) The Kohlrausch function: properties and applications. Anziam J 45:C800–C816

    Article  Google Scholar 

  • Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45(1):115–138

    Article  CAS  Google Scholar 

  • Bazilevsky A, Entov V, Rozhkov A (1990) Liquid filament microrheometer and some of its applications. Third European rheology conference and golden jubilee meeting of the British society of rheology. Springer, Dordrecht, pp 41–43

  • Becker E, Hiller W, Kowalewski T (1991) Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J Fluid Mech 231:189–210

    Article  CAS  Google Scholar 

  • Berry JD, Neeson MJ, Dagastine RR, Chan DY, Tabor RF (2015) Measurement of surface and interfacial tension using pendant drop tensiometry. J Colloid Interface Sci 454:226–237

    Article  CAS  Google Scholar 

  • Boyd RH, Liu F, Runt J, Fitzgerald J (1997) Dielectric spectroscopy of semicrystalline polymers. In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials- fundamental and applications. ACS, Washington, DC, pp 107–136

  • Dadouche T, Yousfi M, Samuel C, Lacrampe MF, Soulestin J (2021) (Nano) Fibrillar morphology development in biobased poly (butylene succinate-co-adipate)/poly (amide-11) blown films. Polym Eng Sci 61(5):1324–1337

    Article  CAS  Google Scholar 

  • Del Rıo O, Neumann A (1997) Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J Colloid Interface Sci 196(2):136–147

    Article  Google Scholar 

  • Derkach S, Krägel J, Miller R (2009) Methods of measuring rheological properties of interfacial layers (experimental methods of 2D rheology). Colloid J 71(1):1–17

    Article  CAS  Google Scholar 

  • Dickinson E (2001) Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B 20(3):197–210

    Article  CAS  Google Scholar 

  • El Omari Y, Yousfi M, Duchet-Rumeau J, Maazouz A (2021) Interfacial rheology testing of molten polymer systems: effect of molecular weight and temperature on the interfacial properties. Polym Testing 101:107280

    Article  CAS  Google Scholar 

  • Elman J, Johs B, Long T, Koberstein J (1994) A neutron reflectivity investigation of surface and interface segregation of polymer functional end groups. Macromolecules 27(19):5341–5349

    Article  CAS  Google Scholar 

  • Feng Y, Liu J, Wang S-Q, Ntetsikas K, Avgeropoulos A, Kostas M et al (2019) Exploring rheological responses to uniaxial stretching of various entangled polyisoprene melts. J Rheol 63(5):763–771

    Article  CAS  Google Scholar 

  • Foegeding EA, Luck P, Davis JP (2006) Factors determining the physical properties of protein foams. Food Hydrocoll 20(2–3):284–292

    Article  CAS  Google Scholar 

  • Freer EM, Wong H, Radke CJ (2005) Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension. J Colloid Interface Sci 282(1):128–132. https://doi.org/10.1016/j.jcis.2004.08.058

    Article  CAS  Google Scholar 

  • Freer EM, Yim KS, Fuller GG, Radke CJ (2004) Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Langmuir 20(23):10159–10167

    Article  CAS  Google Scholar 

  • Gabriele M, Pasquino R, Grizzuti N (2011) Effects of viscosity-controlled interfacial mobility on the coalescence of immiscible polymer blends. Macromol Mater Eng 296(3–4):263–269

    Article  CAS  Google Scholar 

  • Grizzuti N, Buonocore G, Iorio G (2000) Viscous behavior and mixing rules for an immiscible model polymer blend. J Rheol 44(1):149–164

    Article  CAS  Google Scholar 

  • Jaensson NO, Anderson PD, Vermant J (2021) Computational interfacial rheology. J Nonnewton Fluid Mech 290:104507

    Article  CAS  Google Scholar 

  • Jalbert C, Koberstein JT, Yilgor I, Gallagher P, Krukonis V (1993) Molecular weight dependence and end-group effects on the surface tension of poly (dimethylsiloxane). Macromolecules 26(12):3069–3074

    Article  CAS  Google Scholar 

  • Joseph D, Arney M, Gillberg G, Hu H, Hultman D, Verdier C et al (1992) A spinning drop tensioextensometer. J Rheol 36(4):621–662

    Article  CAS  Google Scholar 

  • Jůza J (2019) Surface tension measurements of viscous materials by pendant drop method: time needed to establish equilibrium shape. Macromol Symp 384(1):1800150

  • Kleingartner JA, Lee H, Rubner MF, McKinley GH, Cohen RE (2013) Exploring the kinetics of switchable polymer surfaces with dynamic tensiometry. Soft Matter 9(26):6080–6090

    Article  CAS  Google Scholar 

  • Klitzing Rv, Müller H-J (2002) Film stability control. Curr Opin Colloid Interface Sci 7(1–2):42–49

    Article  Google Scholar 

  • Kwok D, Cheung L, Park C, Neumann A (1998) Study on the surface tensions of polymer melts using axisymmetric drop shape analysis. Polym Eng Sci 38(5):757–764

    Article  CAS  Google Scholar 

  • Lai L, Mei P, Wu XM, Cheng L, Ren ZH, Liu Y (2017) Interfacial dynamic properties and dilational rheology of sulfonate gemini surfactant and its mixtures with quaternary ammonium bromides at the air–water interface. J Surfactants Deterg 20(3):565–576

    Article  CAS  Google Scholar 

  • Langevin D (2001) Polyelectrolyte and surfactant mixed solutions. Behavior at surfaces and in thin films. Adv Coll Interface Sci 89:467–484

    Article  Google Scholar 

  • Laplace PS (1805) Traité de mécanique céleste: suppléments au livre X. Gauthier-Villars, Œuvres Complètes, Paris 4:771–777

  • LeGrand D, Gaines G Jr (1975) Immiscibility and interfacial tension between polymer liquids: dependence on molecular weight. J Colloid Interface Sci 50(2):272–279

    Article  CAS  Google Scholar 

  • Lei J, Gao Y, Ma Y, Zhao K, Du F (2019) Improving the emulsion stability by regulation of dilational rheology properties. Colloids Surf A 583:123906

    Article  CAS  Google Scholar 

  • Lucassen J, Van den Tempel M (1972) Longitudinal waves on visco-elastic surfaces. J Colloid Interface Sci 41(3):491–498

    Article  CAS  Google Scholar 

  • Lunkenheimer K, Kretzschmar G (1975) Neuere Ergebnisse der Untersuchung der Elastizität von löslichen Adsorptionsschichten nach der Methode der pulsierenden Blase. Z Phys Chem 256(1):593–605

    Article  CAS  Google Scholar 

  • Mahmoudi P, Matsen M (2017) Entropic segregation of short polymers to the surface of a polydisperse melt. Eur Phys J E 40(10):1–9

    Article  CAS  Google Scholar 

  • McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44(3):653–670

    Article  CAS  Google Scholar 

  • Miller E, Clasen C, Rothstein JP (2009) The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol Acta 48(6):625–639

    Article  CAS  Google Scholar 

  • Miller R, Loglio G, Tesei U, Schano K-H (1991) Surface relaxations as a tool for studying dynamic interfacial behaviour. Adv Coll Interface Sci 37(1–2):73–96

    Article  CAS  Google Scholar 

  • Miller R, Sedev R, Schano K-H, Ng C, Neumann A (1993) Relaxation of adsorption layers at solution/air interfaces using axisymmetric drop-shape analysis. Colloids Surf 69(4):209–216

    Article  CAS  Google Scholar 

  • Mobius D, Miller R (1998) Drops and bubbles in interfacial research. Studies in interface science. Elsevier Science & Technology 6:61–138

  • Molaei M, Crocker JC (2020) Interfacial microrheology and tensiometry in a miniature, 3-d printed Langmuir trough. J Colloid Interface Sci 560:407–415

    Article  CAS  Google Scholar 

  • Murray BS, Nelson PV (1996) A novel Langmuir trough for equilibrium and dynamic measurements on air− water and oil− water monolayers. Langmuir 12(25):5973–5976

    Article  CAS  Google Scholar 

  • Naillon A, de Loubens C, Chèvremont W, Rouze S, Leonetti M, Bodiguel H (2019) Dynamics of particle migration in confined viscoelastic Poiseuille flows. Phys Rev Fluids 4(5):053301

    Article  Google Scholar 

  • Noskov B, Bykov A (2018) Dilational rheology of monolayers of nano-and micropaticles at the liquid-fluid interfaces. Curr Opin Colloid Interface Sci 37:1–12

    Article  CAS  Google Scholar 

  • Oh SG, Slattery JC (1978) Disk and biconical interfacial viscometers. J Colloid Interface Sci 67(3):516–525. https://doi.org/10.1016/0021-9797(78)90242-4

    Article  CAS  Google Scholar 

  • Peters GW, Zdravkov AN, Meijer HE (2005) Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces. J Chem Phys 122(10):104901

    Article  CAS  Google Scholar 

  • Quintero C, Noïk C, Dalmazzone C, Grossiord J (2009) Formation kinetics and viscoelastic properties of water/crude oil interfacial films. Oil Gas Sci Technol-Revue De l’IFP 64(5):607–616

    Article  Google Scholar 

  • Rahman MR, Deng A, Hussak S-A, Ahmed A, Willers T, Waghmare PR (2019) On the effect of relaxation time in interfacial tension measurement. Colloids Surf A 574:239–244

    Article  CAS  Google Scholar 

  • Ravera F, Loglio G, Kovalchuk VI (2010) Interfacial dilational rheology by oscillating bubble/drop methods. Curr Opin Colloid Interface Sci 15(4):217–228

    Article  CAS  Google Scholar 

  • Renggli D, Alicke A, Ewoldt RH, Vermant J (2020) Operating windows for oscillatory interfacial shear rheology. J Rheol 64(1):141–160

    Article  CAS  Google Scholar 

  • Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary break-up rheometry of low-viscosity elastic fluids. Appl Rheol 15(1):12–27

    Article  CAS  Google Scholar 

  • Roland C, Santangelo P (2002) Effect of temperature on the terminal relaxation of branched polydimethysiloxane. J Non-Cryst Solids 307:835–841

    Article  Google Scholar 

  • Russev SC, Alexandrov N, Marinova KG, Danov KD, Denkov ND, Lyutov L, Vulchev V, Bilke-Krause C (2008) Instrument and methods for surface dilatational rheology measurements. Rev Sci Instrum 79(10):104102

  • Sachsenheimer D, Hochstein B, Buggisch H, Willenbacher N (2012) Determination of axial forces during the capillary breakup of liquid filaments–the tilted CaBER method. Rheol Acta 51(10):909–923

    Article  CAS  Google Scholar 

  • Santini E, Liggieri L, Sacca L, Clausse D, Ravera F (2007) Interfacial rheology of Span 80 adsorbed layers at paraffin oil-water interface and correlation with the corresponding emulsion properties. Colloid Surf A-Physicochem Eng Asp 309(1–3):270–279. https://doi.org/10.1016/j.colsurfa.2006.11.041

    Article  CAS  Google Scholar 

  • Sauer BB, Dipaolo NV (1991) Surface tension and dynamic wetting on polymers using the Wihelmy method: applications to high molecular weights and elevated temperatures. J Colloid Interface Sci 144(2):527–537

    Article  CAS  Google Scholar 

  • Schmidt I, Novales B, Boué F, Axelos MA (2010) Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. J Colloid Interface Sci 345(2):316–324

    Article  CAS  Google Scholar 

  • Serrien G, Geeraerts G, Ghosh L, Joos P (1992) Dynamic surface properties of adsorbed protein solutions: BSA, casein and buttermilk. Colloids Surf 68(4):219–233

    Article  CAS  Google Scholar 

  • Shi T, Ziegler VE, Welge IC, An L, Wolf BA (2004) Evolution of the interfacial tension between polydisperse “immiscible” polymers in the absence and in the presence of a compatibilizer. Macromolecules 37(4):1591–1599

    Article  CAS  Google Scholar 

  • Siahcheshm P, Goharpey F, Foudazi R (2018) Droplet retraction in the presence of nanoparticles with different surface modifications. Rheol Acta 57(11):729–743

    Article  CAS  Google Scholar 

  • Slattery JC, Sagis L, Oh E-S (2007) Interfacial transport phenomena. Springer Science & Business Media

  • Sun H-Q, Zhang L, Li Z-Q, Zhang L, Luo L, Zhao S (2011) Interfacial dilational rheology related to enhance oil recovery. Soft Matter 7(17):7601–7611

    Article  CAS  Google Scholar 

  • Tufano C, Peters G, Van Puyvelde P, Meijer H (2008) Transient interfacial tension and morphology evolution in partially miscible polymer blends. J Colloid Interface Sci 328(1):48–57

    Article  CAS  Google Scholar 

  • van Berlo F, Cardinaels R, Peters G, Anderson P (2021) Towards a universal shear correction factor in filament stretching rheometry. Rheol Acta 60(11):691–709

    Article  CAS  Google Scholar 

  • Vandebril S, Franck A, Fuller GG, Moldenaers P, Vermant J (2010) A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49(2):131–144

    Article  CAS  Google Scholar 

  • Velandia SF, Ramos D, Lebrun M, Marchal P, Lemaitre C, Sadtler V et al (2021) Exploring the link between interfacial and bulk viscoelasticity in reverse Pickering emulsions. Colloids Surf A 624:126785

    Article  CAS  Google Scholar 

  • Verwijlen T, Leiske D, Moldenaers P, Vermant J, Fuller G (2012) Extensional rheometry at interfaces: analysis of the Cambridge Interfacial Tensiometer. J Rheol 56(5):1225

    Article  CAS  Google Scholar 

  • Verwijlen T, Moldenaers P, Vermant J (2013) A fixture for interfacial dilatational rheometry using a rotational rheometer. Eur Phys J Spec Top 222(1):83–97

    Article  Google Scholar 

  • Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40(4):613–631

    Article  CAS  Google Scholar 

  • Wagner M, Wolf B (1993) Interfacial tension between polyisobutylene and poly (dimethylsiloxane): influence of chain length, temperature, and solvents. Macromolecules 26(24):6498–6502

    Article  CAS  Google Scholar 

  • Wagner MH, Narimissa E, Huang Q (2018) On the origin of brittle fracture of entangled polymer solutions and melts. J Rheol 62(1):221–233

    Article  CAS  Google Scholar 

  • Wang H, Wei X, Du Y, Wang D (2019) Experimental investigation on the dilatational interfacial rheology of dust-suppressing foam and its effect on foam performance. Process Saf Environ Prot 123:351–357

    Article  CAS  Google Scholar 

  • Wang S-Q (2019) Melt rupture unleashed by few chain scission events in fully stretched strands. J Rheol 63(1):105–107

    Article  CAS  Google Scholar 

  • Young T (1805) An assay on the cohesion of fluids. Philos Trans R Soc Lond 1805(95):65

    Google Scholar 

  • Yousfi M, Porcar L, Lindner P, Boué F, Rharbi Y (2009) A novel method for studying the dynamics of polymers confined in spherical nanoparticles in nanoblends. Macromolecules 42(6):2190–2197

    Article  CAS  Google Scholar 

  • Zell A, Gier S, Rafai S, Wagner C (2010) Is there a relation between the relaxation time measured in CaBER experiments and the first normal stress coefficient? J Nonnewton Fluid Mech 165(19–20):1265–1274

    Article  CAS  Google Scholar 

  • Zhang H, Lamnawar K, Maazouz A (2015) Fundamental studies of interfacial rheology at multilayered model polymers for coextrusion process. AIP Conference Proceedings. AIP Publishing LLC 1664(1):100008

  • Ziegler VE, Wolf BA (2004) Interfacial tensions from drop retraction versus pendant drop data and polydispersity effects. Langmuir 20(20):8688–8692

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Jean-Luc Bridot and Mr. Christian Boinon (TECLIS Instruments, France) for their recommendations and technical assistance regarding the interfacial rheological measurements carried out with the TRACKER instrument. The authors thank Dr. Nadia El Kissi and Mr. Vincent Verdoot from University of Grenoble Alpes for their help and their assistance regarding the capillary breakup extensional rheometry experiments. The authors also gratefully acknowledge Mr. Murat Arli from INSA Lyon for his help in the design of the high temperature interfacial cell. The authors are grateful to the engineering federation Ingelyse of Lyon University and INSA Lyon via the BQR (Bonus Qualité Recherche) for the financial support. Finally, the authors gratefully acknowledge the French Ministry of Superior Education and Research (MESRI) for the doctoral study grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Yousfi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Omari, Y., Yousfi, M., Duchet-Rumeau, J. et al. Probing the elongational rheological behaviour at interfaces of immiscible polymer melts using dilational tensiometry: effect of viscosity and temperature on the interfacial properties. Rheol Acta 61, 613–636 (2022). https://doi.org/10.1007/s00397-022-01364-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-022-01364-x

Keywords

Navigation