Skip to main content
Log in

Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Even though the rheological behavior of aqueous graphene oxide (G-O) dispersions has been shown to be strongly time-dependent, only few transient measurements have been reported in the literature. In this work, we attempt to fill the gap between transient and steady shear rheological characterizations of aqueous G-O dispersions in the concentration range of 0.004 < ϕ < 3.5 wt%, by conducting comprehensive rheological measurements, including oscillatory shear flow, transient shear flow, and steady shear flow. Steady shear measurements have been performed after the evaluation of transient properties of the G-O dispersions, to assure steady-state conditions. We identify the critical concentration ϕ c = 0.08 wt% (where G-O sheets start to interact) from oscillatory shear experiments. We find that the rheology of G-O dispersions strongly depends on the G-O concentration ϕ. Transient measurements of shear viscosity and first normal stress difference suggest that G-O dispersions behave like nematic polymeric liquid crystals at ϕ/ϕ c = 25, in agreement with other work reported in the literature. G-O dispersions also display a transition from negative to positive values of the first normal stress difference with increasing shear rates. Experimental findings of aqueous graphene oxide dispersions are compared and discussed with models and experiments reported for nematic polymeric liquid crystals, laponite, and organoclay dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. According to the definition of Barnes et al. (1989), thixotropy (verbatim) “is the decrease (in time) of ... viscosity under constant shear stress or shear rate, followed by a gradual recovery when the stress or shear rate is removed.”

References

  • Abou B, Bonn D, Meunier J (2003) Nonlinear rheology of laponite suspensions under an external drive. J Rheol 47(4):979–988

    Article  Google Scholar 

  • Aboutalebi S H, Gudarzi M M, Zheng Q B, Kim J K (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988

    Article  Google Scholar 

  • Akbari A, Sheath P, Martin S T, Shinde D B, Shaibani M, Banerjee P C, Tkacz R, Bhattacharyya D, Majumder M (2016) Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun, 7

  • Bai H, Li C, Wang X, Shi G (2011) On the gelation of graphene oxide. J Phys Chem C 115 (13):5545–5551

    Article  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Barrat J L, Berthier L (2000) Fluctuation-dissipation relation in a sheared fluid. Phys Rev E 63(1):012,503

    Article  Google Scholar 

  • Bekkour K, Leyama M, Benchabane A, Scrivener O (2005) Time-dependent rheological behavior of bentonite suspensions: an experimental study. J Rheol 49(6):1329–1345

    Article  Google Scholar 

  • Benna M, Kbir-Ariguib N, Magnin A, Bergaya F (1999) Effect of ph on rheological properties of purified sodium bentonite suspensions. J Colloid Interface Sci 218(2):442–455

    Article  Google Scholar 

  • Berthier L, Barrat J L, Kurchan J (2000) A two-time-scale, two-temperature scenario for nonlinear rheology. Phys Rev E 61(5):5464

    Article  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2013) Rheology of polymer carbon nanotubes composites. Soft Matter 9 (40):9515–9529

    Article  Google Scholar 

  • Cocchini F, Nobile M, Acierno D (1992) Letter: about negative first normal stress differences in a thermotropic l.c. polymer. J Rheol 36:1307–1311

    Article  Google Scholar 

  • Cugliandolo L F, Kurchan J, Peliti L (1997) Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys Rev E 55(4):3898

    Article  Google Scholar 

  • Das S, Irin F, Ma L, Bhattacharia S K, Hedden R C, Green M J (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interfaces 5(17):8633–8640

    Article  Google Scholar 

  • D’Avino G, Maffettone P (2015) Particle dynamics in viscoelastic liquids. J Non-Newton Fluid 215:80–104

    Article  Google Scholar 

  • Del Giudice F, Shen A Q (2017) Shear rheology of graphene oxide dispersions. Curr Opin Chem Eng 16C:23–30

    Article  Google Scholar 

  • Dinkgreve M, Paredes J, Denn M M, Bonn D (2016) On different ways of measuring “the” yield stress. J Non-Newtonian Fluid Mech 238:233–241

    Article  Google Scholar 

  • Dreyer D R, Park S, Bielawski C W, Ruoff R S (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  • Eppenga R, Frenkel D (1984) Monte carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys 52(6):1303–1334

    Article  Google Scholar 

  • Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Complex fluids in biological systems. Springer, pp 207–241

  • Geim A K, Novoselov K S (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  • Green M J, Behabtu N, Pasquali M, Adams W W (2009) Nanotubes as polymers. Polymer 50 (21):4979–4997

    Article  Google Scholar 

  • Guimont A, Beyou E, Martin G, Sonntag P, Cassagnau P (2011) Viscoelasticity of graphite oxide-based suspensions in pdms. Macromolecules 44(10):3893–3900

    Article  Google Scholar 

  • Hato M J, Zhang K, Ray S S, Choi H J (2011) Rheology of organoclay suspension. Colloid Polym Sci 289(10):1119

    Article  Google Scholar 

  • Hobbie E K (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49(4):323–334

    Article  Google Scholar 

  • Jun SI, Lee HS (2012) Negative normal stress differences in graphene/polycarbonate composites. Appl Phys Lett 100(16):164,108

    Article  Google Scholar 

  • Khandal R, Tadros T F (1988) Application of viscoelastic measurements to the investigation of the swelling of sodium montmorillonite suspensions. J Colloid Interface Sci 125(1):122–128

    Article  Google Scholar 

  • Kim H, Macosko C W (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50(15):3797–3809

    Article  Google Scholar 

  • Kim J E, Lee H S (2014) Oscillatory shear induced gelation of graphene–poly (vinyl alcohol) composite hydrogels and rheological premonitor of ultra-light aerogels. Polymer 55(1):287–294

    Article  Google Scholar 

  • Kimura H, Sakurai M, Sugiyama T, Tsuchida A, Okubo T, Masuko T (2011) Dispersion state and rheology of hectorite particles in water over a broad range of salt and particle concentrations. Rheol Acta 50 (2):159–168

    Article  Google Scholar 

  • King H Jr, Milner S T, Lin M Y, Singh J P, Mason T (2007) Structure and rheology of organoclay suspensions. Phys Rev E 75(2):021,403

    Article  Google Scholar 

  • Kiss G, Porter R S (1978) Rheology of concentrated solutions of poly (γ-benzyl-glutamate). In: Journal of polymer science: polymer symposia, Wiley Online Library, vol 65, pp 193–211

  • Krieger I M, Dougherty T J (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol (1957–1977) 3(1):137–152

    Article  Google Scholar 

  • Kugge C, Vanderhoek N, Bousfield D (2011) Oscillatory shear response of moisture barrier coatings containing clay of different shape factor. J Colloid Interface Sci 358(1):25–31

    Article  Google Scholar 

  • Kumar P, Maiti U N, Lee K E, Kim S O (2014) Rheological properties of graphene oxide liquid crystal. Carbon 80:453–461

    Article  Google Scholar 

  • Labanda J, Sabaté J, Llorens J (2007) Rheology changes of laponite aqueous dispersions due to the addition of sodium polyacrylates of different molecular weights. Colloids Surf A Physicochem Eng Asp 301(1):8–15

    Article  Google Scholar 

  • Larson R (1990) Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17):3983–3992

    Article  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids, vol 150. Oxford University Press, New York

    Google Scholar 

  • Li D, Müller M B, Gilje S, Kaner R B, Wallace G G (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  Google Scholar 

  • Lin-Gibson S, Pathak J, Grulke E, Wang H, Hobbie E (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92(4):048,302

    Article  Google Scholar 

  • Liu J, Chen G, Jiang M (2011) Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers. Macromolecules 44(19):7682–7691

    Article  Google Scholar 

  • Liu Y, Chen C, Liu L, Zhu G, Kong Q, Hao R, Tan W (2015) Rheological behavior of high concentrated dispersions of graphite oxide. Soft Mater 13(3):167–175

    Article  Google Scholar 

  • Lu C, Mai Y W (2005) Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95(8):088, 303

    Article  Google Scholar 

  • Macosko C (1994) Rheology: Principles, measurements, and applications. 1994. Wiley-VCH, Weinheim

    Google Scholar 

  • Marrucci G, Maffettone P (1989) A description of the liquid-crystalline phase of rodlike polymers at high shear rates. Macromolecules 22(10):4076–4082

    Article  Google Scholar 

  • Marrucci G, Maffettone P (1990a) Nematic phase of rodlike polymers. I. Prediction of transient behavior at high shear rates. J Rheol 34(8):1217–1230

  • Marrucci G, Maffettone P (1990b) Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regime. J Rheol 34(8):1231–1244

  • Michot L J, Bihannic I, Maddi S, Funari S S, Baravian C, Levitz P, Davidson P (2006) Liquid–crystalline aqueous clay suspensions. Proc Natl Acad Sci 103(44):16,101–16,104

    Article  Google Scholar 

  • Moan M, Aubry T, Bossard F (2003) Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J Rheol 47(6):1493–1504

    Article  Google Scholar 

  • Montesi A, Peña A A, Pasquali M (2004) Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys Rev Lett 92(5):058,303

    Article  Google Scholar 

  • Naficy S, Jalili R, Aboutalebi S H, Gorkin I I I R A, Konstantinov K, Innis P C, Spinks G M, Poulin P, Wallace G G (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1(3):326–331

    Article  Google Scholar 

  • Niu R, Gong J, Xu D, Tang T, Sun Z Y (2014) Influence of molecular weight of polymer matrix on the structure and rheological properties of graphene oxide/polydimethylsiloxane composites. Polymer 55(21):5445–5453

    Article  Google Scholar 

  • Niu X, Gong J, Xu D, Tanga T, Sun Z Y (2015) Impact of particle surface chemistry on the structure and rheological properties of graphene-based particle/polydimethylsiloxane composites. RSC Adv 5:34,885–34,893

    Article  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51(4):627–659

    Article  Google Scholar 

  • Osuji C O, Weitz D A (2008) Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. Soft Matter 4(7):1388–1392

    Article  Google Scholar 

  • Park S, Ruoff R S (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  Google Scholar 

  • Perge C, Taberlet N, Gibaud T, Manneville S (2014) Time dependence in large amplitude oscillatory shear: a rheo-ultrasonic study of fatigue dynamics in a colloidal gel. J Rheol 58(5):1331– 1357

    Article  Google Scholar 

  • Pignon F, Magnin A, Piau J M (1997a) Butterfly light scattering pattern and rheology of a sheared thixotropic clay gel. Phys Rev Lett 79(23):4689

  • Pignon F, Magnin A, Piau J M, Cabane B, Lindner P, Diat O (1997b) Yield stress thixotropic clay suspension: investigations of structure by light, neutron, and x-ray scattering. Phys Rev E 56(3): 3281

  • Potts J R, Dreyer D R, Bielawski C W, Ruoff R S (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  Google Scholar 

  • Renou F, Stellbrink J, Petekidis G (2010) Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (laos). J Rheol 54(6):1219–1242

    Article  Google Scholar 

  • Sadasivuni K K, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25

    Article  Google Scholar 

  • Saunders J M, Goodwin J W, Richardson R M, Vincent B (1999) A small-angle x-ray scattering study of the structure of aqueous laponite dispersions. J Phys Chem B 103(43):9211–9218

    Article  Google Scholar 

  • Schiller P, Bombrowski M, Wahab M, Mögel H J (2016) Models for normal stress and orientational order in sheared kaolin suspensions. J Rheol 60(2):311–325

    Article  Google Scholar 

  • Schweizer T, Bardow A (2006) The role of instrument compliance in normal force measurements of polymer melts. Rheol Acta 45(4):393–402

    Article  Google Scholar 

  • Shaffer M, Windle A (1999) Analogies between polymer solutions and carbon nanotube dispersions. Macromolecules 32(20):6864– 6866

    Article  Google Scholar 

  • Shih W Y, Shih W H, Aksay I A (1999) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82(3):616–624

    Article  Google Scholar 

  • Singh V K, Cura M E, Liu X, Johansson L S, Ge Y, Hannula S P (2014) Tuning the mechanical and adsorption properties of silica with graphene oxide. ChemPlusChem 79(10):1512–1522

    Article  Google Scholar 

  • Sohm R, Tadros T F (1989) Viscoelastic properties of sodium montmorillonite (gelwhite h) suspensions. J Colloid Interface Sci 132(1):62–71

    Article  Google Scholar 

  • Sun X, Luo D, Liu J, Evans D G (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. Acs Nano 4(6):3381–3389

    Article  Google Scholar 

  • Tesfai W, Singh P, Shatilla Y, Iqbal M Z, Abdala A A (2013) Rheology and microstructure of dilute graphene oxide suspension. J Nanopart Res 15(10):1–7

    Article  Google Scholar 

  • Tripathi S N, Malik R S, Choudhary V (2015) Melt rheology and thermomechanical behavior of poly (methyl methacrylate)/reduced graphene oxide nanocomposites. Polym Advan Technol 26(12):1558–1566

    Article  Google Scholar 

  • Vallés C, Young R J, Lomax D J, Kinloch I A (2014) The rheological behaviour of concentrated dispersions of graphene oxide. J Mater Sci 49(18):6311–6320

    Article  Google Scholar 

  • Vasu K, Krishnaswamy R, Sampath S, Sood A (2013) Yield stress, thixotropy and shear banding in a dilute aqueous suspension of few layer graphene oxide platelets. Soft Matter 9(25):5874–5882

    Article  Google Scholar 

  • Walters K (1975) Rheometry. Chapman & Hall, London

    Google Scholar 

  • Xu Z, Gao C (2011) Aqueous liquid crystals of graphene oxide. ACS Nano 5(4):2908–2915

    Article  Google Scholar 

  • Yang X, Guo C, Ji L, Li Y, Tu Y (2013) Liquid crystalline and shear-induced properties of an aqueous solution of graphene oxide sheets. Langmuir 29(25):8103–8107

    Article  Google Scholar 

  • Yao L, Lu Y, Wang Y, Hu L (2014) Effect of graphene oxide on the solution rheology and the film structure and properties of cellulose carbamate. Carbon 69:552–562

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Steven Aird for careful proof reading. The authors also thank Prof. Pier Luca Maffettone, Prof. Giovanniantonio Natale, and Prof. Gareth McKinley for helpful discussions. F.D.G. and A.Q.S. gratefully acknowledge the support of the Okinawa Institute of Science and Technology Graduate University with subsidy funding from the Cabinet Office, Government of Japan. B.V.C. and R.S.R were supported by IBS-R019-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Del Giudice.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 701 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giudice, F.D., Cunning, B.V., Ruoff, R.S. et al. Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions. Rheol Acta 57, 293–306 (2018). https://doi.org/10.1007/s00397-018-1077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-018-1077-9

Keywords

Navigation