Skip to main content
Log in

Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The linear and nonlinear viscoelastic behaviors of poly(ethylene oxide) (PEO) in aqueous media have been investigated as a function of concentration and molecular weight. A particular interest has been paid to study the effect of turbulent flow under stirring, inducing both shear and elongational stresses, on the rheological behavior of the polymer solutions. The comparison of intrinsic viscosity and viscoelastic properties between shaken and stirred PEO solutions is discussed at the molecular scale in terms of chain scission and aggregation. Results point out that the effect of the mechanical history on the rheological response of PEO solutions depends also on the concentration regime and molecular weight. Indeed, the influence of the dispersion procedure vanishes by decreasing both the concentration and the molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B 16:3–27

    Article  CAS  Google Scholar 

  • Aubry T, Bossard F, Moan M (2002) Rheological study of compositional heterogeneity in an associative commercial polymer solution. Polymer 43:3375–3380

    Article  CAS  Google Scholar 

  • Buchholz BA, Zahn JM, Kenward M, Slater GW, Barron AE (2004) Flow-induced chain scission as a physical route to narrowly distributed, high molar mass polymers. Polymer 45:1223–1234

    Article  CAS  Google Scholar 

  • Cao BH, Kim MW (1994) Molecular weight dependence of the surface tension of aqueous poly(ethylene oxide) solutions. Faraday Discuss 98:245–252

    Article  CAS  Google Scholar 

  • Cottrell TL (1958) The strengths of chemical bonds, 2nd edn. Butterworths Scientific, London

    Google Scholar 

  • D’Almeida AR, Dias ML (1997) Comparative study of shear degradation of carboxymethylcellulose and poly(ethylene oxide) in aqueous solution. Polym Degrad Stab 56:331–337

    Article  Google Scholar 

  • Daoust H, St Cyr D (1984) Microcalorimetric study of poly(ethylene oxide) in water and in water–ethanol mixed solvent. Macromolecules 17:596–601

    Article  ADS  CAS  Google Scholar 

  • Devanand K, Selser JC (1990) Polyethylene oxide does not necessarily aggregate in water. Nature 343:739–741

    Article  ADS  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics, Chapter 5. Oxford University Press, Oxford

    Google Scholar 

  • Dormidontova EE (2002) Role of competitive PEO–water and water–water hydrogen bonding in aqueous solution PEO behaviour. Macromolecules 35:987–1001

    Article  ADS  CAS  Google Scholar 

  • Dormidontova EE (2004) Influence of end groups on phase behaviour and properties of PEO in aqueous solutions. Macromolecules 37:7747–7761

    Article  ADS  CAS  Google Scholar 

  • Du M, Maki Y, Tominaga T, Furukawa H, Gong JP, Osada Y, Zheng Q (2007) Friction of soft gel in dilute polymer solution. Macromolecules 40:4313–4321

    Article  ADS  CAS  Google Scholar 

  • Duval M (2000) Monitoring of cluster formation and elimination in PEO solutions. Macromolecules 33:7862–7867

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Duval M, Boué F (2007) Dilute poly(ethylene oxide) aqueous solutions in a turbulent flow. Macromolecules 40:8384–8388

    Article  ADS  CAS  Google Scholar 

  • Duval M, Sarazin D (2003) Properties of PEO in dilute solution under stirring. Macromolecules 36:1318–1323

    Article  ADS  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry, Chapter 7. Cornell University Press, Ithaca

    Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • de Gennes PG (1991) A second type of phase separation in polymer solution. C R Acad Sci Ser II 313:1117–1122

    Google Scholar 

  • Gray FM, Armand M (2000) In: Osaka T, Datta M (eds) New trends in electrochemical technology: energy storage systems for electronics. Gordon and Breach, New York, pp 351–406

    Google Scholar 

  • Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37:6932–6937

    Article  ADS  CAS  Google Scholar 

  • Hassouna F, Morlat-Thérias S, Mailhot G, Gardette JL (2007) Influence of water on the photodegradation of poly(ethylene oxide). Polym Degrad Stab 92:2042–2050

    Article  CAS  Google Scholar 

  • Ho DL, Hammouda B, Kline SR (2003) Clustering of poly(ethylene oxide) in water revisited. J Polym Sci Polym Phys 41:135–138

    Article  CAS  Google Scholar 

  • Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716–2718

    Article  CAS  Google Scholar 

  • Hunston DL, Zakin JL (1978) Effects of flow-assisted degradation on the drag reduction phenomenon. Polym Prepr Am Chem Soc Div Polym Chem 19:430–438

    CAS  Google Scholar 

  • Islam MT, Vanapalli SA, Solomon MJ (2004) Inertial effect on polymer scission in planar elongational cross-slot flow. Macromolecules 37:1023–1030

    Article  ADS  CAS  Google Scholar 

  • Jellinek HHG, White G (1951) The degradation of long-chain molecules by ultrasonic waves. I. Theoretical. J Polym Sci 6:745–756

    CAS  Google Scholar 

  • Kanwal F, Pethrick RA (2004) Ultrasonic degradation studies of poly(ethylene oxide), poly(ethylene adipate) and poly(dimethylsiloxane). Polym Degrad Stab 84:1–6

    Article  CAS  Google Scholar 

  • Khan MS (2006) Aggregate formation in poly(ethylene oxide) solutions. J Appl Polym Sci 102:2578–2583

    Article  CAS  Google Scholar 

  • Kim MW, Cao BH (1993) Additional reduction of surface tension of aqueous polyethylene oxide (PEO) solution at high polymer concentration. Europhys Lett 24:229–234

    Article  ADS  CAS  Google Scholar 

  • Lee JH, Lee HB, Andrade JD (1995) Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci 20:1043–1079

    Article  CAS  Google Scholar 

  • Liberator MW, McHugh AJ (2005) Dynamics of shear-induced structure formation in high molecular weight aqueous solutions. J Non-Newton Fluid Mech 132:45–52

    Article  CAS  Google Scholar 

  • Madras G, McCoy BJ (2001) Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J 47:2341–2348

    Article  CAS  Google Scholar 

  • Makogon BP, Bykova EN, Klenin SI, Povkh IL (1988) Instability in polyethylene oxide solutions in a hydrodynamic field. J Eng Phys Thermophys 54:161–164

    Google Scholar 

  • Matthys EF (1991) Heat transfer, drag reduction, and fluid characterization for turbulent flow of polymer solutions: recent results and research needs. J Non-Newton Fluid Mech 38(2–3):313–342

    Article  CAS  Google Scholar 

  • Minoura Y, Kasuya T, Kawamura S, Nakano A (1967) Degradation of poly(ethylene oxide) by high-speed stirring. J Polym Sci Part A-2 5:125–142

    Article  CAS  Google Scholar 

  • Morlat S, Gardette JL (2003) Phototransformation of water-soluble polymers. Part II: photooxidation of poly(ethylene oxide) in aqueous solution. Polymer 44:7891–7897

    Article  CAS  Google Scholar 

  • Odell JA, Keller A (1986) Flow-induced chain fracture of isolated linear macromolecules in solution. J Polym Sci Part B 24:1889–1916

    Article  CAS  Google Scholar 

  • Odell JA, Keller A, Muller J (1992) Thermomechanical degradation of macromolecules. Colloid Polym Sci 270:307–324

    Article  CAS  Google Scholar 

  • Ovenall DW, Hastings GW, Allen PEM (1958) Degradation of polymer molecules in solution under influence of ultrasonic waves. I. Kinetic analysis. J Polym Sci 33:207–212

    ADS  CAS  Google Scholar 

  • Pang P, Englezos P (2002) Kinetics of the aggregation of polyethylene oxide at temperatures above the polyethylene oxide–water cloud point temperature. Colloids Surf A Physicochem Eng Asp 204:23–30

    Article  CAS  Google Scholar 

  • Polik WF, Burchard W (1983) Static light scattering from aqueous poly(ethylene oxide) solutions in the temperature range 20–90°C. Macromolecules 16:978–982

    Article  ADS  CAS  Google Scholar 

  • Polverari M, van de Ven TGM (1996) Dilute aqueous poly(ethylene oxide) solutions: clusters and single molecules in thermodynamic equilibrium. J Chem Phys 100:13687–13695

    Article  CAS  Google Scholar 

  • Powell RL, Scharz WH (1975) Rheological properties of polyethylene oxide solutions. Rheol Acta 14:729–740

    Article  CAS  Google Scholar 

  • Pritchard NJ, Hughes DE, Peacocke AR (1966) The ultrasonic degradation of biological macromolecules under conditions of stable cavitation. I. Theory, methods, and application to deoxyribonucleic acid. Biopolymer 4:259–273

    Article  CAS  Google Scholar 

  • Rangelov S, Brown W (2000) Microgel formation in high molecular weight poly(ethylene oxide). Polymer 41:4825–4380

    Article  Google Scholar 

  • Sung JH, Lim ST, Kim CA, Chung H, Choi HJ (2004) Mechanical degradation kinetics of poly(ethylene oxide) in a turbulent flow. Korea Aust Rheol J 16:57–62

    Google Scholar 

  • Tam KC, Tiu C (1989) Steady and dynamic shear properties of aqueous polymer solutions. J Rheol 33:257–280

    Article  ADS  CAS  Google Scholar 

  • Tam KC, Tiu C (1993) Improved correlation for shear-dependent viscosity of polyelectrolyte solutions. J Non-Newton Fluid Mech 46:275–288

    Article  CAS  Google Scholar 

  • Vijayalakshmi SP, Chakraborty J, Madras G (2005) Thermal and microwave-assisted oxidative degradation of poly(ethylene oxide). J Appl Polym Sci 96:2090–2096

    Article  CAS  Google Scholar 

  • Villain FL, Parel JM, Lee W, Simon G (1996) Injectable polyethylene oxide gel implant and method for production. WO Pat 006883

  • Wright PV (1998) Polymer electrolytes—the early days. Electrochim Acta 43(10–11):1137–1143

    Article  CAS  Google Scholar 

  • Yamakawa H (1961) Concentration dependence of polymer chain configurations in solution. J Chem Phys 34:1360–1372

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bossard.

Additional information

Paper presented at the de Gennes Discussion Conference held February 2–5, 2009 in Chamonix, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossard, F., El Kissi, N., D’Aprea, A. et al. Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO. Rheol Acta 49, 529–540 (2010). https://doi.org/10.1007/s00397-009-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0402-8

Keywords

Navigation