Skip to main content
Log in

Shear flow behavior of confined magnetorheological fluids at low magnetic field strengths

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The non-linear properties of iron based magneto-rheological (MR) fluids are investigated at low magnetic field strengths (0–1.7 kA/m) and different gap thickness (0–500 μm) in a plate-plate configuration. Single-width chain models qualitatively predict the low-shear flow behavior when plotting the field-specific viscosity, η F , as a function of the Mason number, Mn: a slope close to −1 is observed in log-log representations. Wall depletion effects are observed when the suspensions are sheared under the presence of low external magnetic fields applied and/or large gap distances. These results are correlated to frictional yield stress measurements and chain length distribution calculations in the presence of the external magnetic field. Finally, an equivalent slip layer thickness is calculated using the method of Yoshimura and Prud’homme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsion and particle suspensions in viscometers: its cause, character, and cure. J Non-Newtonian Fluid Mech 56:221–251

    Google Scholar 

  • Cutillas S, Meunier A, Lemaire E, Bossis G, Persello J (1996) Phase separation and turbidity of electrorheological fluids. Int J Mod Phys B 10(23/24):3093–3101

    Google Scholar 

  • de Gans BJ, Hoekstra H, Mellema J (1999) Non-linear magnetorheological behaviour of an inverse ferrofluid. Faraday Discuss 112:209–224

    Article  Google Scholar 

  • de Gans BJ, Duin NJ, van den Ende D, Mellema J (2000) The influence of particle size on the magnetorheological properties of an inverse ferrofluid. J Chem Phys 113(5):2032–2042

    Article  Google Scholar 

  • de Vicente J, Bossis G, Lacis S, Guyot M (2002) Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J Magn Magn Mater 251(1):100–108

    Google Scholar 

  • de Vicente J, López-López MT, González-Caballero F, Durán JDG (2003) A rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J Rheol 47(5):1093–1109

    Article  Google Scholar 

  • Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967

    CAS  Google Scholar 

  • Goshawk JA, Binding DM, Kell DB, Goodacre R (1998) Rheological phenomena occurring during the shearing flow of mayonnaise. J Rheol 42(6):1537–1553

    Article  CAS  Google Scholar 

  • Halsey TC, Martin JE, Adolf D (1992) Rheology of electrorheological fluids. Phys Rev Lett 68(10):1519–1522

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg DJ, Zukoski CF (1990) Studies on the steady shear behavior of electrorheological suspensions. Langmuir 6:15–24

    CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

  • Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans I 85(9):2785–2795

    Article  CAS  Google Scholar 

  • Martin JE, Anderson RA (1996) Chain model of electrorheology. J Chem Phys 104(12):4814–4827

    Article  CAS  Google Scholar 

  • McLeish TCB, Jordan T, Shaw MT (1991) Viscoelastic response of electrorheological fluids. I. Frequency dependence. J Rheol 35(3):427–448

    Article  CAS  Google Scholar 

  • Osipov MA, Teixeira PIC, Telo da Gama MM (1996) Structure of strongly dipolar fluids at low densities. Phys Rev E 54:2597–2609

    Article  CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng 17:57–103

    Article  Google Scholar 

  • Phulé PP, Ginder JM (1998) The materials science of field-responsive fluids. MRS Bull August 19–22

  • Rankin PJ, Ginder JM, Klingenberg DJ (1998) Electro- and magneto-rheology. Curr Opin Colloid Interface Sci 3:373-381

    CAS  Google Scholar 

  • Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A (2000) Magnetorheology of magnetic holes compared to magnetic particles. J Rheol 44(1):91–104

    Article  CAS  Google Scholar 

  • Yoshimura AS, Prud’homme RK (1987) A comparison of techniques for measuring yield stresses. J Rheol 31(8):699–710

    Article  CAS  Google Scholar 

  • Yoshimura AS, Prud’homme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32(1):53–67

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Ministerio de Ciencia y Tecnología (Spain) and FEDER funds (EU) under project MAT2001-3803 is gratefully acknowledged. Dr. D. van den Ende and Prof. J. Mellema from the Institute of Mechanics, Processes and Control, University of Twente, The Netherlands, are thanked for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vicente, J., López-López, M.T., Durán, J.D.G. et al. Shear flow behavior of confined magnetorheological fluids at low magnetic field strengths. Rheol Acta 44, 94–103 (2004). https://doi.org/10.1007/s00397-004-0383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0383-6

Keywords

Navigation