Skip to main content
Log in

Rheological constitutive equation of solids: a link between models based on irreversible thermodynamics and on fractional order derivative equations

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this paper we focus on the rheological problem of defining a constitutive equation for viscoelastic materials. In this simple case, we show that writing the dissipative component of the observable response to a given excitation as the result of multiple internal processes working for equilibrium recovery (flux of internal hidden variables), can yield a recursive series in time. This can be obtained when use is made of the theorem of created entropy equipartition as a model for fluctuation regression. A distribution (spectrum) for relaxation times naturally follows. The model thus obtained reflects the concept of a hierarchically constrained dynamic behavior. The conclusion is that the operator of non-integer differentiation in time applied to field variables can also be recovered from pure thermodynamic considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Aharoune A, Marceron-Balland P, Cunat C (2001) The DNLR approach and relaxation phenomena. Part II. Application: volume recovery of PVAc. Comparison between the DNLR approach and some other modelings. Mech Time-Depend Mater 5:345–377

    Article  CAS  Google Scholar 

  • Allen DH (1985) A prediction of heat generation in a thermo-viscoplastic uniaxial bar. Int J Solids Struct 21(4):325–342

    Article  Google Scholar 

  • Ayadi Z, Marceon P, Schmitt JF, Cunat C (1999) Thermodynamic modeling of creep mechanical behaviour by non linear relaxation. Eur Phys J AP 6:229–235

    Google Scholar 

  • Bagley RL (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27(10):1412–1417

    CAS  Google Scholar 

  • Bagley RL (1991) The thermorheologically complex material. Int J Eng Sci 29(7):797–806

    Article  Google Scholar 

  • Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155

    Article  CAS  Google Scholar 

  • Balankin AS (1997) Physics of fracture and mechanics of self-affine cracks. Eng Fracture Mech 57:135–203

    Article  Google Scholar 

  • Bendler JT, Shlesinger MF (1985) Dielectric relaxation via the Montroll-Weiss random walk of defect. In: Shlesinger MF, Weiss GH (eds) The wonderful world of stochastics, a tribute to E.W. Montroll. Elsevier Sciences, pp 33–46

  • Bendler JT, Shlesinger MF (1988) A first passage time problem for random walk occupancy. J Stat Phys 53:1069–1087

    Google Scholar 

  • Biot MA (1958) Linear thermodynamics and the mechanics of solids. Proceedings of the 3rd US National Congress of Applied Mechanics. ASME, pp 1–18

  • Carpinteri A, Cornetti P (2002) A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals 13:85–94

    Article  Google Scholar 

  • Chrysochoos A, Peyroux R (1998) Analyse expérimentale et modélisation numérique des couplages thermomécaniques dans les matériaux solides. Rev Gén Therm 37:582–606

    Google Scholar 

  • Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47:597–613

    CAS  Google Scholar 

  • Cunat C (1985) Approche statistique des propriétés thermodynamiques des états liquides et vitreux. Relaxation des liquides et transition vitreuse. Influence des associations chimiques. Thèse de Doctorat d'Etat

  • Cunat C (1988) Thermodynamic treatment of relaxation in frozen-in systems. "University" of the distribution law for relaxation times. Z Phys Chem Neue Folge 157:419–423, 425–429

    CAS  Google Scholar 

  • Cunat C (1991) A thermodynamical theory of relaxation based on distribution of non linear processes. J Non-Cryst Solids 131–133, 196–199

  • Cunat C (2001) The DNLR approach and relaxation phenomena. Part I. Historical account and DNLR formalism. Mech Time-Depend Mater 5:39–65

    Article  CAS  Google Scholar 

  • De Donder T (1920) Leçons de thermodynamique et de chimie physique. Gauthiers-Villars, Paris

  • De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North Holland Publishing, Amsterdam

  • Dillon OW (1962) An experimental study of the heat generated during torsional oscillations. J Mech Phys Solids 10:224–235

    Google Scholar 

  • Enelund M, Olsson P (1999) Damping described by fading memory analysis and application to fractional derivative models, Int J Solids Struct 36:939–970

    Article  Google Scholar 

  • Faccio-Toussaint E, Ayadi Z, Pilvin P, Cunat C (2001) Modeling of the mechanical behavior of a nickel alloy by using a time-dependent thermodynamic approach to relaxation of continuous media. Mech Time-Depend Mater 5:1–25

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

  • Friedrich C, Schiessel H, Blumen A (1999) Constitutive behavior modeling and fractional calculus. In: Siginer DA, DeKee D, Chabra RP (eds) Advances in the flow and rheology of non-Newtonian fluids. Elsevier, Amsterdam, pp 429–466

  • Gemant A (1936) A method of analyzing experimental results obtained from elasto-viscous bodies. Physics 7:17–31

    Google Scholar 

  • Glöckle WG, Nonnenmacher TF (1991) Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24:6426–6434

    Google Scholar 

  • Haddad A (1996), Thermodynamique de la relaxation appliquée à la modélisation du comportement des polymères sous chargements complexes: viscoélasticité en régime dynamique, fluage thermostimulé, courants thermostimulés et relaxation diélectrique. Thesis, INPL, Nancy

  • Heymans N, Bawens JC (1994) Fractal rheological models and fractional differential equations for viscoelastic behaviour. Rheol Acta, 33:210–219

    Google Scholar 

  • Kleiser T, Bocek MX (1986) The fractal nature of slips in crystals. Z Metallkd 77:582–587

    CAS  Google Scholar 

  • Kluitenberg GA (1962) Thermodynamic theory of elasticity and plasticity. Physica 28:217–232

    Article  Google Scholar 

  • Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307

    Google Scholar 

  • Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. A transparent multiparameter theory. J Polym Sci Phys 17:1097

    CAS  Google Scholar 

  • Kuiken DC (1994) Thermodynamics of irreversible processes. Applications to diffusion and rheology. Wiley, Chichester

  • LeMéhauté A, Nigmatullin RR, Nivanen L (1998) Flèches du temps et géométrie fractale. Hermès, 2nd edn

  • Lesieutre GA, Mingori DL (1990) Finite element modeling of frequency-dependent material damping using augmenting thermodynamic field. J Guidance Control Dynam 13:1040–1050

    Google Scholar 

  • Lion A (1997) On the thermodynamics of fractional damping elements. Continuum Mech Thermodyn 9:83–96

    Article  Google Scholar 

  • Mainardi F (1994) Fractional relaxation in anelastic solids. J Alloys Compd 211/212:534–538

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, NY

  • Maugin GA, Muschik W (1994) Thermodynamics with internal variables. Part I. General concepts. J Non-Equilib Thermodyn 19:217–249

    Google Scholar 

  • Meixner J (1949) Thermodynamik und Relaxationsserscheinungen. Z Naturforsch 4a:594–600

    CAS  Google Scholar 

  • Moshrefi-Torbati M, Hammond JK (1998) Physical and geometrical interpretation of fractional operators. J Franklin Inst 335B(6):1077–1086

    Article  Google Scholar 

  • Mosolov A (1994) Singular fractal functions and mesoscopic effects in mechanics. Chaos Solitons Fractals 4:2093–2102

    Article  Google Scholar 

  • Nigmatullin RR (1990) Fractional integral and its physical interpretation. J Theor Math Phys 90(3):242–251

    Google Scholar 

  • Nonnenmacher TF, Glöckle WG (1991) A fractional model for mechanical stress relaxation. Philos Mag Lett 64(2):89–93

    Google Scholar 

  • Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, NY

  • Nutting PG (1921) A new generalized law of deformation. J Franklin Inst 191:679–685

    Google Scholar 

  • Oldham KB, Zoski CG (1983) Analogue instrumentation for processing polarographic data. J Electroanal Chem 157:27–51

    CAS  Google Scholar 

  • Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37:405–426; Reciprocal relations in irreversible processes II. Phys Rev 38:2265–2279

    CAS  Google Scholar 

  • Oustaloup A (1995) La dérivation non entière. Théorie, synthèse et applications. Hermès

  • Padovan J, Guo Y (1988) General response of viscoelastic systems modeled by fractional operators. J Franklin Inst 325:247–275

    Article  Google Scholar 

  • Prigogine I (1968) Introduction à la thermodynamique des processus irréversibles. Monographies Dunod, Paris

  • Rahouadj R, Cunat C (2001a) A nonlinear viscoelastic model based on fluctuating modes. In: Lemaître J (ed) Handbook of materials behavior models, vol I. Deformations of materials. Academic Press, pp 107–116

  • Rahouadj R, Cunat C (2001b) Physical aging and glass transition of polymers. In: Lemaître J (ed) Handbook of materials behavior models, vol III. Multiphysics behaviors. Academic Press, pp 944–954

  • Rogers L (1983) Operators and fractional derivatives for viscoelastic constitutive equation. J Rheol 27(4):351–372

    Article  Google Scholar 

  • Rouse PE (1953) The theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280

    CAS  Google Scholar 

  • Schapery RA (1966) A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics. Proceedings of the 5th US National Congress of Applied Mechanics. ASME, pp 511–530

  • Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys A Math Gen 26:5057–5069

    Article  Google Scholar 

  • Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28:6567–6584

    CAS  Google Scholar 

  • Scott-Blair G, Caffyn JE (1949) An application of the theory of quasi-properties to the treatment of anomalous strain-stress relation. Philos Mag 40:80–94

    CAS  Google Scholar 

  • Shlesinger MF, Klafter J (1986) The nature of temporal hierarchies underlying relaxation in disordered systems. In: Pietronero L, Tosatti E (eds) Fractals in physics. Elsevier Sciences

  • Stastna J, De Kee D, Powley M, Schümmer P, Otten B (1990) Fractal-time stochastic processes and dynamic functions of polymeric systems. Rheol Acta 29:137–144

    CAS  Google Scholar 

  • Tauchert TR (1967) The temperature generated during torsional oscillations in polyethylene rods. Int J Eng Sci 5:353–365

    Article  Google Scholar 

  • Tisza L (1966) Generalized thermodynamics. MIT Press, Cambridge, MA

  • Tshoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. An introduction. Springer, Berlin Heidelberg New York

  • Williams ML (1964) Structural analysis of viscoelastic materials. AIAA J 2(5):785–808

    Google Scholar 

  • Zaiser M, Hähner P (1999) The flow stress of fractal dislocation arrangements. Mater Sci Eng A270:299–307

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane André.

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, S., Meshaka, Y. & Cunat, C. Rheological constitutive equation of solids: a link between models based on irreversible thermodynamics and on fractional order derivative equations. Rheol Acta 42, 500–515 (2003). https://doi.org/10.1007/s00397-003-0305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-003-0305-z

Keywords

Navigation