Skip to main content
Log in

Physico-chemical parameters and interaction forces associated with the clouding phenomenon of triton X-100 and ceftriaxone sodium mixture: an understanding of the impacts of potassium salts

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Surfactants have the application in drug formulation purposes as common excipients. The use of surfactant in the incidence of additives improves the absorption and drug release phenomenon. Herein, the development of the clouding of non-ionic surfactants (NISs), triton X-100 (TX-100), and ceftriaxone sodium (CTS) drug mixture, in the appearance of potassium salts (KCl, K3PO4, KBrO3, K2SO4, and KI), has been studied by the way of cloud point (CP) measurement method. The CPs of the study system suffered a lessening as the quantities of KCl, K3PO4, KBrO3, and K2SO4 increased while the opposite result was observed for KI salt. Aggregation within the associated solution systems may lead to a decline in the corresponding CP. The standard free energy (\({\Delta G}_{\mathrm{c}}^{0}\)) values reveal the non-spontaneous cloudy formation of TX-100 + CTS mixture, and non-spontaneity go through a drop with the growing electrolyte concentration. The standard enthalpy (\({\Delta H}_{\mathrm{c}}^{0}\)) and standard entropy (\({\Delta S}_{\mathrm{c}}^{0}\)) values for phase partitioning of TX-100 + CTS reveal the exothermic interaction in the presence of KCl, K3PO4, KBrO3, and K2SO4 while mainly hydrophobic in the presence of KI salt. The intrinsic enthalpy (\({\Delta H}_{c}^{0,*}\)) values reveal that TX-100 + CTS mixture experiences the highest stability in K3PO4 salt media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated during the study are available from the corresponding author on reasonable request.

References

  1. Lawrence MJ (1994) Surfactant systems: their use in drug delivery. Chem Soc Rev 23:417–424

    Article  CAS  Google Scholar 

  2. Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  PubMed  Google Scholar 

  3. Rahaman SK, Chakraborty M, Mandal T, Kundu S, Dhibar S, Kumar D, Ibrahim SM, Chakravarty M, Saha B (2023) Mechanically tuned lanthanum carbonate nanorods in water-in-oil microemulsion scaffolds. J Mol Liq 372:121204

    Article  Google Scholar 

  4. Agatić ZF, Popović K, Kumar D, Škorić D, Poša M (2023) Regular solution theory regarding sodium cholate and hexadecyltrimethylammonium bromide or dodecyltrimethylammonium bromide binary mixed micelles. J Mol Liq 379:121682

    Article  Google Scholar 

  5. Schramm LL, Marangoni DG (2000) Surfactants and their solutions: basic principles. Fundamentals and applications in the petroleum industry, Cambrige University Press, UK, Surfactants, pp 3–50

    Google Scholar 

  6. Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH (1998) Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. J Pediatr 132:40–47

    Article  CAS  PubMed  Google Scholar 

  7. Bernard GG, Holm LW, Harvey CP (1980) Use of surfactant to reduce CO2 mobility in oil displacement. SPE J 20:281–292

    CAS  Google Scholar 

  8. Nakahara H, Nishino A, Tanaka A, Fujita Y, Shibata O (2019) Interfacial behavior of gemini surfactants with different spacer lengths in aqueous medium. Colloid Polym Sci 297:183–189

    Article  CAS  Google Scholar 

  9. Jiang P, Zhang L, Tang D, Li L, Ge J, Zhang G, Pei H (2019) Effect of nano-SiO2 and surfactants on the oil-water interfacial properties. Colloid Polym Sci 297:903–915

    Article  CAS  Google Scholar 

  10. Niraula TP, Sah SN, Bhattarai A, Dominguez H, Beatriz Salazar-Arriaga A, Kumar D (2022) The physicochemical properties and contact angle of sodium dodecyl sulfate in water-acetone with and without sodium nitrate (NaNO3). J Mol Liq 367A:120339

    Article  Google Scholar 

  11. Posa M, Bhattarai A, Khan JM, Saha B, Kumar D (2023) Impact of double headed geminis on leucine and ninhydrin reaction in buffer solvent. Colloid Surf A 674:131951

    Article  CAS  Google Scholar 

  12. Sun Y, Xu X, Qin M, Pang N, Wang G, Zhuang L (2019) Dodecyl sulfate-based anionic surface-active ionic liquids: synthesis, surface properties, and interaction with gelatin. Colloid Polym Sci 297:571–586

    Article  CAS  Google Scholar 

  13. Stejskal J, Trchová M (2020) Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid Polym Sci 298:319–325

    Article  CAS  Google Scholar 

  14. Bhardwaj P, Kamil M, Panda M (2018) Surfactant-polymer interaction: effect of hydroxypropylmethyl cellulose on the surface and solution properties of gemini surfactants. Colloid Polym Sci 296:1879–1889

    Article  CAS  Google Scholar 

  15. Liu C-L, Nikas YJ, Blankschtein D (1996) Novel bioseparations using two-phase aqueous micellar systems. Biotechnol Bioeng 52:185–192

    Article  CAS  PubMed  Google Scholar 

  16. Akter R, Anis-Ul-Haque KM, Mottalib MA, Kumar D, Joy MTR, Rana S, Hoque MA, Almutairi TM, Mohammed AAA, Iqbal A (2023) Influences of short-chain alcohols, urea and temperature on aggregation behavior of tetradecyltrimethylammonium bromide and antidiabetic drug mixture. Mol Phys 121:e2148584

    Article  Google Scholar 

  17. Hoque MA, Ali MI, Rub MA, Rahman M, Rana S, Rahman MM, Kumar D, Azum N, Asiri AM, Khan MA (2023) Physico-chemical properties of the association of cetyltrimethylammonium bromide and bovine serum albumin mixture in aqueous-organic mixed solvents. Int J Biol Macromol 228:445–452

    Article  CAS  PubMed  Google Scholar 

  18. Kumar D, Rub MA (2017) Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride in absence and presence of urea. J Mol Liq 238:389–396

    Article  CAS  Google Scholar 

  19. Kumar D, Azum N, Rub MA, Asiri AM (2018) Aggregation behavior of sodium salt of ibuprofen with conventional and gemini surfactant. J Mol Liq 262:86–96

    Article  CAS  Google Scholar 

  20. Bhattarai A, Rub MA, Posa M, Saha B, Asiri AM, Kumar D (2022) Studies of ninhydrin and phenylalanine in cationic dimeric gemini micellar system: spectrophotometric and conductometric measurements. Colloids Surf A 655:130334

    Article  CAS  Google Scholar 

  21. Attwood D, Florence AT (1983) Surfactant systems. Their chemistry, pharmacy and biology. Chapman & Hall, New York

  22. Islam MN, Rub MA, Alotaibi MM, Joy MTR, Jahan I, Mahbub S, Rana S, Kumar D, Alfakeer M, Asiri AM, Hoque MA, Kabir SE (2023) Investigation of the impacts of simple electrolytes and hydrotrope on the interaction of ceftriaxone sodium with cetylpyridinium chloride at numerous study temperatures. Chem Pap 77:5199–5212

    Article  CAS  Google Scholar 

  23. Molina-bolívar JA, Aguiar J, Peula-Garcia JM, Ruiz CC (2002) Photophysical and light scattering studies on the aggregation behaviour of Triton X-100 in formamide-water mixed solvents. Mol Phys 100:3259–3269

    Article  Google Scholar 

  24. Alghamdi YG, Rub MA, Kumar D (2023) Influence of twin-headed gemini micellar system on the study of methionine amino acid with ninhydrin in buffer solution. R Soc Open Sci 10:221249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosen MJ, Junkappu JT (2012) Surfactants and interfacial phenomena, 4th Ed. Hobo-ken, Wiley-Interscience, NL

  26. Alam MS, Siddiq AM, Mandal AB (2016) The micellization and clouding phenomena of a nonionic surfactant, ploy (ethylene glycol) t-octylphenol ether (Triton X-100): effect of (chloride salt) electrolytes. J Disp Sci Technol 37:1287–1293

    Article  CAS  Google Scholar 

  27. Ren ZH, Huang J, Lai L, Yu XR, Shi DP, Chang YL (2019) Thermodynamics and phase separation phenomenon of polyoxyethylene sorbitan monolaurate in micellar solutions containing inorganic salts. J Taiwan Inst Chem Eng 96:29–34

    Article  CAS  Google Scholar 

  28. Li DN, Huang J, Ren ZH, Sheng R, Qian ZB, Li BB, Quan XF, Zhang YX, Wang JR, Tian H (2021) Phase separation phenomena and thermodynamics of octylphenol polyoxyethyelene ether in micellar solutions: effect of high concnetration of inorganic salts and linear correlation. J Ind Eng Chem 99:172–178

    Article  CAS  Google Scholar 

  29. Islam SMR, Islam MR, Mahbub S, Hasan K, Kumar D, Khan JM, Ahmad A, Hoque MA, Islam DMS (2023) Impacts of hydrotropes on clouding phenomena and physico-chemical parameters coupled with the triton X 100 & promethazine hydrochloride mixture. Mol Phys 121:e2212535

    Article  Google Scholar 

  30. Rub MA, Hasan T, Akter R, Kumar D, Kabir-ud-Din AAM, Hoque MA (2023) Physico-chemical investigation of the assembly and clouding development nature of the mixture of metformin hydrochloride and ionic/nonionic surfactants: influences of hydrotropes. J Mol Liq 371:121070

    Article  Google Scholar 

  31. Alam MR, Islam MR, Khan JM, Rayhan U, Rana S, Kumar D, Ahmad A, Hoque MA, Kabir SE (2023) Physicochemical investigations of clouding development and physico-chemical properties of Triton X-100 and levofloxacin hemihydrate mixture: influence of sodium salts composition. Colloid Polym Sci 301:1125–1136

    Article  CAS  Google Scholar 

  32. Mishu AA, Amin MR, Rub MA, Hoque MA, Kabir SE, Asiri AM (2019) Impact of different diols/polyols on the phase separation behavior as well as thermodynamic properties of tween 80. J Phys Org Chem 32:e4001

    Article  CAS  Google Scholar 

  33. Shinoda K, Nakagawa T, Tamamushi B, Ishemushi T (1967) Colloidal surfactants. Academic Press, New York

    Google Scholar 

  34. Davis JR, Panagiotopoulos AZ (2009) Micellization and phase separation in binary amphiphile mixtures. Mol Phys 107:2359–2366

    Article  CAS  Google Scholar 

  35. Nakagawa T, Shinoda K (1963) Chapter two-physicochemical studies in aquous solutions of nonionic surface active agents. Colloidal Surfactants 97–178

  36. Deive FJ, Rodríguez A, Pereiro AB, Araújo JMM, Longo MA, Coelho MAZ, Canongia LJN, Esperanca JMSS, Rebelo LPN, Marrucho IM (2011) Ionic liquid-based aqueous biphasic system for lipase extraction. Green Chem 13:390–396

    Article  CAS  Google Scholar 

  37. Freire MG, Neves CMSS, Marrucho IM, Canongia LJN, Rebelo LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12:1715–1718

    Article  CAS  Google Scholar 

  38. Dominguez-Perez M, Tome LIN, Freire MG, Marrucho IM, Cabeza O, Coutinho JAP (2010) Extraction of biomolecules using aqueous biphasic systems formed by ionic liquids and aminoacids. Sep Purif Technol 72:85–91

    Article  CAS  Google Scholar 

  39. Saitoh T, Hinze WL (1995) Use of surfactant-mediated phase separation (cloud point extraction) with affinity ligands for the extraction of hydrophilic proteins. Talanta 42:119–127

    Article  CAS  PubMed  Google Scholar 

  40. Hasan T, Mahbub S, Kumar D, Gatasheh MK, Joy MTR, Goni MA, Rana S, Hoque MA (2022) Phase separation and thermodynamics of the mixture of metformin hydrochloride + triton X-100 in ammonium salts media: impacts of composition of media. Mol Phys 120:e2121776

    Article  Google Scholar 

  41. Koley D, Bard AJ (2010) Triton X-100 concentration effects on the membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). PNAS 107:16783–16787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rahim MA, Mahbub S, Islam MK, Ahsan SMA, Rana S, Rub MA, Khan A, Hoque MA (2019) Influence of different additives on the interaction of quinolone antibiotic drug with surfactant: conductivity and cloud point measurement study. J Surf Deterg 23:457–470

    Article  Google Scholar 

  43. Johnson M (2013) Detergents: Triton X-100, Tween-20, and More. Mater Methods 3:163

    Article  Google Scholar 

  44. El-Aila HJY (2009) Interaction of nonionic surfactant triton-X-100 with ionic surfactants. J Disp Sci Technol 30:1277–1280

    Article  CAS  Google Scholar 

  45. Hasan T, Rub MA, Joy MTR, Rana S, Khan F, Hoque MA, Kabir M (2022) Clouding and thermodynamic behavior of the triton X-100 + metformin hydrochloride drug mixture: investigation of the impacts of potassium salts. J Mol Liq 354:118853

    Article  CAS  Google Scholar 

  46. Choi MPK, Chan KKC, Leung HW, Huie CW (2003) Pressurized liquid extraction of active ingredients (ginsenosides) from medicinal plants using non-ionic surfactant solutions. J Chromatogr A 983:153–162

    Article  CAS  PubMed  Google Scholar 

  47. Zheng K, Xia W, Zhang W (2021) Reverse flotation of non-coking coal fines using non-ionic surfactant triton X-100 as depressant. Colloids Surf A 611:125794

    Article  CAS  Google Scholar 

  48. Purkait MK, DasGupta S, De S (2009) Determination of thermodynamic parameters for the cloud point extraction of different dyes using TX-100 and TX-114. Desalination 244:130–138

    Article  CAS  Google Scholar 

  49. Rony MRI, Khan JM, Jahan I, Joy MTR, Hasan T, Kumar D, Ahmad A, Rana S, Hoque MA (2023) Influences of alcohols urea and polyethylene glycol on the cloudy formation nature and physico-chemical parameters of the mixture of triton X-100 and ceftriaxone sodium salt. Colloids Surf A 677:132410

    Article  CAS  Google Scholar 

  50. Singh K, Chauhan S (2020) Temperature dependent micellar behaviour of sodium cholate and sodium deoxycholate in the presence of ceftriaxone sodium: a physicochemical study. J Mol Liq 316:113833

    Article  CAS  Google Scholar 

  51. Rahman M, Khan MA, Rub MA, Hoque MA (2016) Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug. J Mol Liq 223:716–724

    Article  CAS  Google Scholar 

  52. Wang K, Yao J, Li Z, Zhu Y, Shao W, Yu L (2015) Biophysical study on the interaction ropivacine with human serum albumin using spectroscopic methods. Lat Am J Pharm 34:1645–1651

    CAS  Google Scholar 

  53. Rahman MA, Iqbal Z, Hussain A (2012) Formulation optimization and in vitro characterization of sertraline loaded self-nanoemulsifying drug delivery system (SNEDDS) for oral administration. J Pharm Invest 42:191–202

    Article  CAS  Google Scholar 

  54. Nerurkar MM, Ho NFH, Burton PS, Vidmar TJ, Borchardt RT (1997) Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J Pharm Sci 86:813–821

    Article  CAS  PubMed  Google Scholar 

  55. Rahman MH, Khan JM, Anis-Ul-Haque KM, Hasan K, Joy MTR, Kumar D, Ahmad A, Rana S, Hoque MA, Rahman MM (2023) Influences of diols and nonionic hydrotrope on the aggregation and physico-chemical properties of sodium dodecyl sulfate and polyvinyl alcohol mixture at numerous experimental temperatures. J Mol Liq 388:122768

    Article  CAS  Google Scholar 

  56. Hoque MA, Khan MA, Hossain MD (2013) Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide. J Chem Thermodyn 60:71–75

    Article  CAS  Google Scholar 

  57. Hoque MA, Hossain MD, Khan MA (2013) Interaction of cephalosporin drugs with dodecyltrimethylammonium bromide. J Chem Thermodyn 63:135–141

    Article  CAS  Google Scholar 

  58. Bhuiyan HA, Anis-Ul-Haque KM, Joy MTR, Rana S, Khan JM, Kumar D, Rehman MT, Goni MA, Hoque MA, Kabir SE (2023) Aggregation phenomena and physico-chemical properties of tetradecyltrimethylammonium bromide and protein (bovine serum albumin) mixture: influence of electrolytes and temperature. Int J Biol Macromol 253:127101

    Article  CAS  PubMed  Google Scholar 

  59. Kumar D, Rub MA (2016) Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures. J Phys Org Chem 29:394–405

    Article  CAS  Google Scholar 

  60. Kumar D, Khan JM, Posa M, Pulikkal AJ, Saha B, Bhattarai A (2023) Effect of quaternary ammonium gemini surfactant solution on rate constant of ninhydrin−lysine reaction. Ind Eng Chem Res 62:15897–15906

    Article  CAS  Google Scholar 

  61. Kabir-ud-Din, Khatoon S, Naqvi AZ (2008) The effect of added salts and organics on the cloud point of TX-114. J Disp Sci Technol 29:485–491

    Article  Google Scholar 

  62. Schott H (2001) Effect of inorganic additives on solutions of nonionic surfactants -XVI. Limiting cloud points of highly polyoxyethylated surfactants. Colloid Surf A 186:129–136

    Article  CAS  Google Scholar 

  63. Schott H, Royce AE, Han SK (1984) Effect of inorganic additives on solutions of nonionic surfactants: VII. Cloud point shift values of individual ions. J Colloid Interface Sci 98:196–201

    CAS  Google Scholar 

  64. Sultana AA, Rahman MH, Joy MTR, Rana S, Khan JM, Kumar D, Ahmad A, Hoque MA, Rahman MM, Kabir SE (2023) Interaction of sodium alginate biopolymer with sodium dodecyl sulfate in aqueous medium and different additive solutions at several temperatures. Chem Eng Commun. https://doi.org/10.1080/00986445.2023.2255530

    Article  Google Scholar 

  65. Mahajan RK, Chawla J, Bakshi MS (2004) Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid Polym Sci 282:1165–1168

    Article  CAS  Google Scholar 

  66. Jan M, Dar AA, Amin A, Rehman N, Rather GM (2007) Clouding behavior of nonionic–cationic and nonionic–anionic mixed surfactant systems in presence of carboxylic acids and their sodium salts. Colloid Polym Sci 285:631–640

    Article  CAS  Google Scholar 

  67. Albertsson PA (1986) Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes and cells in aqueous polymer two phase systems and their use in biochemical analysis and biotechnology, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  68. Blankschtein D, Thurston GM, Benedek GB (1986) Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions. J Chem Phys 85:7268–7288

    Article  CAS  Google Scholar 

  69. Amin MR, Mahbub S, Molla MR, Alam MM, Hossain MF, Rana S, Rub MA, Kumar D, Hoque MA (2019) Phase separation and thermodynamic behavior of triton X-100 in the occurrence of levofloxacin hemihydrates: influence of additives. J Chem Eng Data 64:2750–2758

    Article  CAS  Google Scholar 

  70. Al-Sabagh AM, Nasser NM, Migahed MA, Kandil NG (2011) Effect of chemical structure on the cloud point of some new non-ionic surfactants based on bisphenol in relation to their surface active properties. Egypt J Pet 20:59–66

    Article  CAS  Google Scholar 

  71. Mahbub S, Hoque MA, Rub MA (2019) Clouding and thermodynamic characteristics of triton X-100 in the presence of ciprofloxacin hydrochloride: influence of polyols. J Chem Eng Data 64:4181–4188

    Article  CAS  Google Scholar 

  72. Alam MS, Kabir-ud-Din, Mandal AB (2010) Thermodynamics at the cloud point of phenothiazine drug chlorpromazine hydrochloride-additive systems. J Chem Eng Data 55:1693–1699

    Article  CAS  Google Scholar 

  73. Cui M, Shizhen M, Liu M, Yuan H, Du Y (2008) Mechanism of surfactant micelle formation. Langmuir 24:10771–10775

    Article  CAS  PubMed  Google Scholar 

  74. Islam MN, Rub MA, Islam MR, Goni MA, Rana S, Kumar D, Asiri AM, Alghamdi YG, Hoque MA, Kabir SE (2023) Physico-chemical study of the effects of electrolytes and hydrotropes on the clouding development of TX-100 and ceftriaxone sodium drug mixture. J Mol Liq 379:121601

    Article  Google Scholar 

  75. Finney JL, Bowron DT (2004) Anion bridges and salting out, Curr Opin Colloid. Interface Sci 9:59–63

    CAS  Google Scholar 

  76. Bowron DT, Finney JL (2003) Structure of a salt-amphiphile-water solution and the mechanism of salting out. J Chem Phys 118:8357

    Article  CAS  Google Scholar 

  77. Khan MAR, Amin MR, Mahbub S, Alam MM, Rub MA, Hoque MA, Khan MA, Asiri AM (2018) Effect of various electrolytes on the phase separation and thermodynamic properties of p-tert-alkylphenoxy poly (oxyethylene) ether in absence/attendance of drugs. J Surf Deterg 22:613–623

    Article  Google Scholar 

  78. Batigöc C, Akbas H (2011) Spectrophotometric determination of cloud point of Brij 35 NIS. Fluid Phase Equilib 303:91–95

    Article  Google Scholar 

  79. Amin MR, Rub MA, Shah AH, Kumar D, Rahman MM, Hoque MA, Kabir M, Asiri AM, Kabir SE (2022) Phase separation and conductivity studies on the interaction of promethazine hydrochloride drug with cationic and nonionic surfactants: influences of electrolytes and temperature. J Mol Liq 359:119325

    Article  Google Scholar 

  80. Hierrezuelo JM, Molina-Bolívar JA, Ruiz CC (2014) An energetic analysis of the phase separation in non-ionic surfactant mixtures: the role of the headgroup structure. Entropy 16:4375–4391

    Article  CAS  Google Scholar 

  81. Wang Z, Xu J-H, Zhang W, Zhuang B, Qi H (2008) Cloud point of nonionic surfactant triton X-45 in aqueous solution. Colloids Surf B 61:118–122

    Article  CAS  Google Scholar 

  82. Santos-Ebinuma VC, Lopes AM, Converti A, Júnior AP, Rangel-Yagui CDO (2013) Behavior of Triton X-114 cloud point in the presence of inorganic electrolytes. Fluid Phase Equilib 360:435–438

    Article  CAS  Google Scholar 

  83. Heusch R (1986) Structures in surfactant/water mixtures and their use in biotechnology. BTF: Biotech-Forum 3:1–8

    Google Scholar 

  84. Mahajan S, Shaheen A, Banipal TS, Mahajan RK (2010) Cloud point and surface tension studies of triblock copolymer-ionic surfactant mixed systems in the presence of amino acids or dipeptides and electrolytes. J Chem Eng Data 55:3995–4001

    Article  CAS  Google Scholar 

  85. Hossain M, Mahbub S, Rub MA, Rana S, Hoque MA, Kumar D, Alghamdi YG, Khan MA (2023) The role of additives on the interaction behavior of levofloxacin hemihydrate with crown ether: UV-visible spectroscopic and DFT techniques. J Mol Liq 376:121431

    Article  CAS  Google Scholar 

  86. Rahman M, Hoque MA, Khan MA, Rub MA, Asiri AM (2018) Effect of different additives on the phase separation behavior and thermodynamics of p-tert-alkylphenoxy poly (oxyethylene) ether in absence and presence of drug. Chinese J Chem Eng 26:1110–1118

    Article  CAS  Google Scholar 

  87. Amin MR, Mahbub S, Hidayathulla S, Hoque MA, Rub MA (2018) An estimation of the effect of mono/poly-hydroxy organic compounds on the interaction of tetradecyltrimethylammonium bromide with levofloxacin hemihydrate antibiotic drug. J Mol Liq 269:417–425

    Article  CAS  Google Scholar 

  88. Beesley AH, Evans DF, Laughlin RG (1988) Evidence for the essential role of hydrogen bonding in promoting amphiphilic self-assembly: measurements in 3-methylsydnone. J Phys Chem 92:791–793

    Article  CAS  Google Scholar 

  89. Ahmed MR, M.A. Rub MA, Ali MI, Rana S, Rahman M, Kumar D, A.M. Asiri AM, Hoque MA, (2022) The phase separation, interaction forces and thermodynamics of sodium alginate and TX-100 mixture in the manifestation of alcohols: UV-visible and cloud point measurement studies. J Mol Liq 361:119479

    Article  Google Scholar 

  90. Joy MTR, Rub MA, Hossain MAA, Biswas PK, Alghamdi YG, Asiri AM, Amin MR, Mohanta SC, Hoque MA, Kabir SE (2022) Study of the aggregation, interaction, and thermodynamic properties of the dodecyltrimethylammonium bromide & cefixime trihydrate mixture in sodium salts solution at numerous temperatures. Mol Phys 120:e2091052

    Article  Google Scholar 

  91. Fenta AD (2015) Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1,2-ethanediol and 1,2,3-propanetriol with water. Int J Phys Sci 10:276–288

    Article  CAS  Google Scholar 

  92. Mahbub S (2020) The impact of electrolyte and urea on the phase separation of Triton X-100. J Mol Liq 307:112912

    Article  CAS  Google Scholar 

  93. Lumry R, Rajender S (1970) Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolym 9:1125–1127

    Article  CAS  Google Scholar 

  94. Dutta A, Joy MTR, Ahsan SMA, Gatasheh MK, Kumar D, Rub MA, Hoque MA, Rahman MM, Hoda N, Shafiqul DMS (2023) Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixtures in aqueous and alcoholic media. Chinese J Chem Eng 57:280–289

    Article  CAS  Google Scholar 

  95. Progga SI, Khan JM, Hasan T, Goni MA, Alam A, Kumar D, Rana S, Hoque MA (2023) Association of bovine serum albumin and cetyltrimethylammonium chloride: an investigation of the effects of temperature and hydrotropes. Int J Biol Macromol 246:125592

    Article  CAS  PubMed  Google Scholar 

  96. Amin MR, Alissa SA, Molla MR, Rub MA, Wabaidur SM, Hoque MA, Kabir SE (2020) Influence of the effect of different electrolytes on the interaction of promethazine hydrochloride drug with tetradecyltrimethylammonium bromide at different temperatures. J Phys Org Chem 33:e4057

    Article  CAS  Google Scholar 

  97. Jolicoeur C, Philip PR (1974) Enthalpy-entropy compensation for micellization and other hydrophobic interactions in aqueous solutions. Can J Chem 52:1834–1839

    Article  CAS  Google Scholar 

  98. Elahi F, Mahbub S, Hasan T, Anjum K, Atiya A, Rana S, Hoque MA, Kabir M (2023) Micelle formation and physico-chemical variables for the sodium dodecyl sulfate/cetylpyridinium chloride and their mixture in aqueous propranolol hydrochloride drug solvent: conductivity and theoretical analysis. J Mol Liq 381:121800

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to King Saud University, Riyadh, Saudi Arabia for funding this research through Researchers supporting Project number (RSP-2023-R406).

Funding

This study was funded by Researchers Supporting Project number (RSP-2023-R406), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M.N.I., M.H.M. and S.M. did the experiments. M.R.I., S.R. and A.A. interpreted the results. D.K., M.A.H. and S.E.K. supervised the work and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dileep Kumar.

Ethics declarations

Ethics approval and consent to participate

For human and animal research.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.N., Mahmoud, M.H., Mahbub, S. et al. Physico-chemical parameters and interaction forces associated with the clouding phenomenon of triton X-100 and ceftriaxone sodium mixture: an understanding of the impacts of potassium salts. Colloid Polym Sci 302, 213–224 (2024). https://doi.org/10.1007/s00396-023-05188-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05188-w

Keywords

Navigation