Skip to main content
Log in

Fluorocarbon vapors slow down coalescence in foams: influence of surfactant concentration

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 17 July 2023

This article has been updated

Abstract

Even though it has been known for a long time that traces of perfluorinated vapors suppress gas exchange (coarsening) between the bubbles of aqueous foams, its stabilizing impact on foam coalescence has been evidenced only recently. While previous work has demonstrated this effect for different surfactant types, we investigate here the influence of the surfactant concentration. We compared the foam properties of aqueous solutions of the non-ionic surfactant dodecyldimethylphospine oxide (C12DMPO) in the absence and presence of perfluorohexane (PFH) in the gas phase. In order to decouple foam coarsening and coalescence, we accompany the foam stability experiments with (a) lifetime statistics of individual, vertical foam films pulled from the same solutions and (b) surface tension measurements in controlled gas environments. All measurements show a clear increase of foam and film stability in the presence of PFH, its effect being most pronounced above the cmc of the surfactant. The surface tension measurements show a clear co-adsorption of the PFH up to the formation of macroscopic films at saturation. We complete the analysis by showing that alkane vapors also have a stabilizing effect for the same surfactant solutions, yet much less pronounced than that of PFH. The precise origin of the stabilizing action of these hydrophobic vapors remains to be elucidated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data can be obtained by contacting the authors.

Change history

References

  1. Cantat I, Cohen-Addad S, Elias F, Graner F, Höhler R, Pitois O, Rouyer F, Saint-Jalmes A, Flatman R (2013) Foams. Oxford University Press

    Book  Google Scholar 

  2. Pugh RJ (2016) Bubble and foam chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Langevin D (2020) Emulsions, microemulsions and foams. Springer International Publishing, Cham

    Book  Google Scholar 

  4. Weaire DL, Hutzler S (2001) The physics of foams. Clarendon Press, Oxford

    Google Scholar 

  5. Kabalnov A, Klein D, Pelura T, Schutt E, Weers J (1998) Ultrasound Med Biol 24:739–749

    Article  CAS  PubMed  Google Scholar 

  6. Riess JG (2005) Artif. Cells. Blood Substit. Immobil. Biotechnol 33:47–63

    CAS  Google Scholar 

  7. Steck K, Hamann M, Andrieux S, Muller P, Kékicheff P, Stubenrauch C, Drenckhan W (2021) Adv Mater Interfaces 8:10–15

    Article  Google Scholar 

  8. Fainerman VB, Aksenenko EV, Miller R (2017) Adv Colloid Interface Sci 244:100–112

    Article  CAS  PubMed  Google Scholar 

  9. Gerber F, Krafft MP, Vandamme TF, Goldmann M, Fontaine P (2005) Angew Chemie Int Ed 44:2749–2752

    Article  CAS  Google Scholar 

  10. Gerber F, Krafft MP, Vandamme TF, Goldmann M, Fontaine P (2006) Biophys J 90:3184–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gazzera L, Milani R, Pirrie L, Schmutz M, Blanck C, Resnati G, Metrangolo P, Krafft MP (2016) Angew Chemie 128:10419–10423

    Article  Google Scholar 

  12. Ando Y, Tabata H, Sanchez M, Cagna A, Koyama D, Krafft MP (2016) Langmuir 32:12461–12467

    Article  CAS  PubMed  Google Scholar 

  13. Binks BP, Crichton D, Fletcher PDI, MacNab JR, Li ZX, Thomas RK, Penfold J (1999) Colloids Surfaces A Physicochem Eng Asp 146:299–313

    Article  CAS  Google Scholar 

  14. Fainerman VB, Aksenenko EV, Kovalchuk VI, Miller R (2016) Colloids Surfaces A Physicochem Eng Asp 505:118–123

    Article  CAS  Google Scholar 

  15. Fainerman VB, Aksenenko EV, Lylyk SV, Tarasevich YI, Miller R (2017) Colloids Surfaces A Physicochem Eng Asp 521:211–220

    Article  CAS  Google Scholar 

  16. Fainerman VB, Aksenenko EV, Kovalchuk VI, Javadi A, Miller R (2011) Soft Matter 7:7860–7865

    Article  CAS  Google Scholar 

  17. Javadi A, Moradi N, Fainerman VB, Möhwald H, Miller R (2011) Colloids Surfaces A Physicochem Eng Asp 391:19–24

    Article  CAS  Google Scholar 

  18. Krafft MP, Fainerman VB, Miller R (2015) Colloid Polym Sci 293:3091–3097

    Article  CAS  Google Scholar 

  19. Liu X, Counil C, Shi D, Mendoza-Ortega EE, Vela-Gonzalez AV, Maestro A, Campbell RA, Krafft MP (2021) J Colloid Interface Sci 593:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen PN, Trinh Dang TT, Waton G, Vandamme T, Krafft MP (2011) ChemPhysChem 12:2646–2652

    Article  CAS  PubMed  Google Scholar 

  21. Bey H, Wintzenrieth F, Ronsin O, Höhler R, Cohen-Addad S (2017) Soft Matter 13:6816–6830

    Article  CAS  PubMed  Google Scholar 

  22. Binks BP, Fletcher PDI, Haynes MD (2003) Colloids Surfaces A Physicochem Eng Asp 216:1–8

    Article  CAS  Google Scholar 

  23. Boos J, Drenckhan W, Stubenrauch C (2013) J Surfactants Deterg 16:1–12

    Article  CAS  Google Scholar 

  24. Dias AMA, Gonçalves CMB, Caço AI, Santos LMNBF, Piñeiro MM, Vega LF, Coutinho JAP, Marrucho IM (2005) J Chem Eng Data 50:1328–1333

    Article  CAS  Google Scholar 

  25. Andrieux S (2019) Monodisperse highly ordered and polydisperse biobased solid foams. Springer International Publishing, Cham

    Book  Google Scholar 

  26. Greenspan L (1977) J Res Natl Bur Stand - A Phys Chem 81A:89–96

    Article  PubMed Central  Google Scholar 

  27. Champougny L, Miguet J, Henaff R, Restagno F, Boulogne F, Rio E (2018) Langmuir 34:3221–3227

    Article  CAS  PubMed  Google Scholar 

  28. Miller R, Aksenenko EV, Kovalchuk VI, Fainerman VB (2017) Phys Chem Chem Phys 19:2193–2200

    Article  CAS  PubMed  Google Scholar 

  29. Miller R, Aksenenko EV, Kovalchuk VI, Tarasevich YI, Fainerman VB (2018) Physicochem Probl Miner Process 54:54–62

    CAS  Google Scholar 

  30. Miller R, Aksenenko EV, Kovalchuk VI, Trukhin DV, Tarasevich YI, Fainerman VB (2017) Adv Mater Interfaces 4. https://doi.org/10.1002/admi.201600031

  31. Freire MG, Carvalho PJ, Queimada AJ, Marrucho IM, Coutinho JAP (2006) J Chem Eng Data 51:1820–1824

    Article  CAS  Google Scholar 

  32. Grigoriev D, Stubenrauch C (2007) Colloids surfaces a physicochem Eng Asp 296:67–75

    Article  CAS  Google Scholar 

  33. Martínez-Balbuena L, Arteaga-Jiménez A, Hernández-Zapata E, Márquez-Beltrán C (2017) Adv Colloid Interface Sci 247:178–184

    Article  PubMed  Google Scholar 

  34. Blunk D, Tessendorf R, Buchavzov N, Strey R, Stubenrauch C (2007) J Surfactants Deterg 10:155–165

    Article  CAS  Google Scholar 

  35. Andrieux S, Patil M, Jacomine L, Hourlier-Fargette A, Heitkam S, Drenckhan W (2022) Macromol Rapid Commun 43. https://doi.org/10.1002/marc.202200189

  36. Carey E, Stubenrauch C (2010) J Colloid Interface Sci 343:314–323

    Article  CAS  PubMed  Google Scholar 

  37. Forel E, Dollet B, Langevin D, Rio E (2019) Phys Rev Lett 122:088002

    Article  CAS  PubMed  Google Scholar 

  38. Champougny L, Rio E, Restagno F, Scheid B (2017) J Fluid Mech 811:499–524

    Article  CAS  Google Scholar 

  39. Boulogne F, Restagno F, Rio E (2022) Phys Rev Lett 129:268001

    Article  CAS  PubMed  Google Scholar 

  40. Rio E, Biance A-L (2014) ChemPhysChem 15:3692–3707

    Article  CAS  PubMed  Google Scholar 

  41. Kashimoto K, Yoon J, Hou B, Chen CH, Lin B, Aratono M, Takiue T, Schlossman ML (2008) Phys Rev Lett 101. https://doi.org/10.1103/PhysRevLett.101.076102

  42. Friberg SE, Wohn CS, Greene B, Van Gilder R (1984) J Colloid Interface Sci 101:593–595

    Article  CAS  Google Scholar 

  43. Friberg SE, Blute I, Kunieda H, Stenius P (1986) Langmuir 2:659–664

    Article  CAS  Google Scholar 

  44. Friberg SE, Blute I, Stenius P (1989) J Colloid Interface Sci 127:573–582

    Article  CAS  Google Scholar 

  45. Langevin D (2020) Adv Colloid Interface Sci 275:102075

    Article  CAS  PubMed  Google Scholar 

  46. Dinh H-H-Q, Santanach-Carreras E, Lalanne-Aulet M, Schmitt V, Panizza P, Lequeux F (2021) Langmuir 37:8726–8737

    Article  CAS  PubMed  Google Scholar 

  47. Langevin D (2019) Curr Opin Colloid Interface Sci 44:23–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin Hamann, Sébastien Andrieux, Dominique Langevin, and Marie-Pierre Krafft for stimulating discussions. We thank Marie-Pierre Krafft to have shared numerous surfactants with us for preliminary tests (such as the F-PEG2000 shown in Fig. S1 in the supporting information). Leandro Jacomine is thanked for the help with the measurements. Cosima Stubenrauch acknowledges a fellowship by the Institute of Advanced Studies at the University of Strasbourg (USIAS), and Wiebke Drenckhan acknowledges financial support by an ERC consolidator grant (agreement 819511—METAFOAM). Overall, this work was conducted in the framework of the Interdisciplinary Institute HiFunMat, as part of the ITI 2021-2028 program of the University of Strasbourg, CNRS and Inserm, and was supported by IdEx Unistra (ANR-10-IDEX-0002) and SFRI (STRATUS project, ANR-20-SFRI-0012) under the framework of the French Investments for the Future Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke Drenckhan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the correction in Equ. 1 was incorrectly carried out. Given here is the correct equation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2380 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steck, K., Dijoux, J., Preisig, N. et al. Fluorocarbon vapors slow down coalescence in foams: influence of surfactant concentration. Colloid Polym Sci 301, 685–695 (2023). https://doi.org/10.1007/s00396-023-05129-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05129-7

Keywords

Navigation