Skip to main content
Log in

Miscibility, crystallization, mechanical, and rheological properties of poly (L-lactic acid)/poly(vinyl acetate) blends

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Herein, poly(L-lactic acid) (PLA) and poly(vinyl acetate) (PVAc) with high molecular weight were melt compounded to prepare blends with improved mechanical and rheological properties. Dynamic mechanical analysis (DMA) suggested that PLA and PVAc were miscible. Rheological properties indicated that the addition of PVAc improved the viscoelasticity of PLA melt, resulting in the suppression of cold crystallization of the blends. Isothermal melt crystallization behaviors revealed the addition of PVAc decreased crystallization rate, whereas did not change the crystallization mechanism. Unexpectedly, increases of 38%, 21%, and 55% were achieved in the modulus, yield strength, and elongation at break of blend with 20 wt % PVAc content compared to neat PLA. What is more practical is that the PLA/PVAc blends prepared by simple melt blending process showed the combination of improved stiffness, strength, ductility, and melt strength, which helps to meet the performance and process requirements of PLA in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mittal V, Akhtar T, Luckachan G, Matsko N (2015) PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid Polym Sci 293:573–585

    Article  CAS  Google Scholar 

  2. Gardella L, Calabrese M, Monticelli O (2014) PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym Sci 292:2391–2398

    Article  CAS  Google Scholar 

  3. Antunes LR, Breitenbach GL, Pellá MCG, Caetano J, Dragunski DC (2021) Electrospun poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) nanofibers for the controlled release of cilostazol. Int J Biol Macromol 182:333–342

    Article  CAS  PubMed  Google Scholar 

  4. Sarul DS, Arslan D, Vatansever E, Kahraman Y, Durmus A, Salehiyan R, Nofar M (2021) Preparation and characterization of PLA/PBAT/CNC blend nanocomposites. Colloid Polym Sci 299:987–998

    Article  CAS  Google Scholar 

  5. Zhang J, Wang S, Qiao Y, Li Q (2016) Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid Polym Sci 294:1779–1787

    Article  CAS  Google Scholar 

  6. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233

    Article  CAS  Google Scholar 

  7. Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)/poly (butylene succinate) films. Materials 10:809

    Article  PubMed Central  CAS  Google Scholar 

  8. Nematollahi M, Jalali-Arani A, Modarress H (2019) High-performance bio-based poly(lactic acid)/natural rubber/epoxidized natural rubber blends: effect of epoxidized natural rubber on microstructure, toughness and static and dynamic mechanical properties. Polym Int 68:439–446

    Article  CAS  Google Scholar 

  9. Lin W, Qu JP (2019) Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate-glycidyl methacrylate copolymer. Ind Eng Chem Res 58:10894–10907

    Article  CAS  Google Scholar 

  10. Zhao Y, Zhao B, Wei B, Wei Y, Yao J, Zhang H, Chen X, Shao Z (2020) Enhanced compatibility between poly(lactic acid) and poly (butylene adipate-co-terephthalate) by incorporation of n-halamine epoxy precursor. Int J Biol Macromol 165(Pt A):460–471

    Article  CAS  PubMed  Google Scholar 

  11. Samadi K, Francisco M, Hegde S, Diaz CA, Trabold TA, Dell EM, Lewis CL (2019) Mechanical, rheological and anaerobic biodegradation behavior of a poly(lactic acid) blend containing a poly(lactic acid)-co-poly(glycolic acid) copolymer. Polym Degrad Stabil 170:109018

  12. Ding Y, Feng W, Huang D, Lu B, Ji J (2019) Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur Polym J 118:45–52

    Article  CAS  Google Scholar 

  13. Yang J, Zhu H, Zhang C, Jiang Q, Zhao Y, Chen P, Wang D (2016) Transesterification induced mechanical properties enhancement of PLLA/PHBV bio-alloy. Polymer 83:230–238

    Article  CAS  Google Scholar 

  14. Hassouna F, Raquez JM, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134–2144

    Article  CAS  Google Scholar 

  15. Hao X, Kaschta J, Pan Y, Liu X, Schubert DW (2016) Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer 82:57–65

    Article  CAS  Google Scholar 

  16. Hao X, Kaschta J, Liu X, Pan Y, Schubert DW (2015) Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 80:38–45

    Article  CAS  Google Scholar 

  17. Zou H, Yi C, Wang L, Xu W (2010) Crystallization, hydrolytic degradation, and mechanical properties of poly (trimethylene terephthalate)/poly(lactic acid) blends. Polym Bull 64:471–481

    Article  CAS  Google Scholar 

  18. Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumit M (2007) Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(p-vinyl phenol) blends. Polym Degrad Stabil 92:1621–1631

    Article  CAS  Google Scholar 

  19. Chiu H-J (2006) Miscibility and crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(vinyl acetate) blends. J Appl Polym Sci 100:980–988

    Article  CAS  Google Scholar 

  20. Li Y, Lei Y, Yao S, Han C, Xiao L (2020) Miscibility, crystallization, rheological and mechanical properties of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/ poly(vinyl acetate) blends. Thermochim Acta 693:178755

  21. Madbouly SA, Mansour AA, Abdou NY (2007) Molecular dynamics of amorphous/crystalline polymer blends studied by broadband dielectric spectroscopy. Eur Polym J 43:1892–1904

    Article  CAS  Google Scholar 

  22. Hay JN, Sharma L (2000) Crystallisation of poly(3-hydroxybutyrate)/polyvinyl acetate blends. Polymer 41:5749–5757

    Article  CAS  Google Scholar 

  23. Sivalingam G, Karthik R, Madras G (2004) Blends of poly(ɛ-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stab 84:345–351

    Article  CAS  Google Scholar 

  24. Gajria AM, Davé V, Gross RA, McCarthy SP (1996) Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37:437–444

    Article  CAS  Google Scholar 

  25. Park JW, Im SS (2003) Miscibility and morphology in blends of poly(L-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer 44:4341–4354

    Article  CAS  Google Scholar 

  26. Gao J, Bai H, Zhang Q, Gao Y, Chen L, Fu Q (2012) Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. eXPRESS Polym Lett 6:860–870

  27. Mahalik JP, Madras G (2006) Enzymatic degradation of poly(D, L-lactide) and its blends with poly(vinyl acetate). J Appl Polym Sci 101:675–680

    Article  CAS  Google Scholar 

  28. Li Y, Zhao L, Han C, Xiao L, Yu Y, Zhou G, Xu M (2021) Effect of the molecular weight of poly(vinyl acetate) on the polymorphism and thermomechanical properties of poly(L-lactic acid)/poly(D-lactic acid) blends. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10716-3

    Article  Google Scholar 

  29. Huang Y, Müllera MT, Boldta R, Zschecha C, Gohsc U, Wieβner S (2021) A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide. Polym Test 97:107160

  30. He Z, Shi W, Chen F, Liu W, Liang Y, Han C (2014) Effective morphology control in an immiscible crystalline/crystalline blend by artificially selected viscoelastic phase separation pathways. Macromolecules 47:1741–1748

    Article  CAS  Google Scholar 

  31. Fox TG (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123–125

    CAS  Google Scholar 

  32. Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. I Non-crystalline copolymers J Appl Chem 2:493–500

    CAS  Google Scholar 

  33. Cai H, Yu J, Qiu Z (2012) Miscibility and crystallization of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(vinyl phenol) blends. Polym Eng Sci 52:233–241

    Article  CAS  Google Scholar 

  34. Chuang HK, Han CD (1984) Rheological behavior of polymer blends. J Appl Polym Sci 29:2205–2229

    Article  CAS  Google Scholar 

  35. Mazidi MM, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened polylactide- (PLA-) based ternary blends with significantly enhanced glass transition and melt strength: Tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4431

    Article  CAS  Google Scholar 

  36. Navarro-Baena I, Kenny JM, Peponi L (2014) Crystallization and thermal characterization of biodegradable tri-block copolymers and poly(ester-urethane)s based on PCL and PLLA. Polym Degrad Stab 108:140–150

    Article  CAS  Google Scholar 

  37. Stoclet G, Seguela R, Lefebvre J-M (2011) Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer 52:1417–1425

    Article  CAS  Google Scholar 

  38. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci Polym Phys 42:25–32

    Article  CAS  Google Scholar 

  39. Li J, Qiu Z (2019) Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohyd Polym 205:211–216

    Article  CAS  Google Scholar 

  40. Avrami M (1939) Kinetics of phase change I General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  41. Avrami M (1940) Kinetics of phase change II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  42. Tsui A, Frank CW (2014) Comparison of anhydrous and monohydrated forms of orotic acid as crystal nucleating agents for poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 55:6364–6372

    Article  CAS  Google Scholar 

  43. Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R, S)-3-hydroxybutyrate]. Polymer 41:5985–5992

    Article  CAS  Google Scholar 

  44. Huang T, Yang J, Zhang N, Zhang J, Wang Y (2017) Crystallization of poly(L-lactide) in the miscible poly(L-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym Bull 75:2641–2655

    Article  CAS  Google Scholar 

  45. Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298

    Article  CAS  Google Scholar 

  46. Saha D, Samal SK, Biswal M, Mohanty S, Nayak SK (2019) Preparation and characterization of poly(lactic acid)/poly(ethylene oxide) blend film: effects of poly(ethylene oxide) and poly(ethylene glycol) on the properties. Polym Int 68:164–172

    Article  CAS  Google Scholar 

  47. Liang H, Hao Y, Liu S, Zhang H, Li Y, Dong L, Zhang H (2013) Thermal, rheological, and mechanical properties of polylactide/poly(diethylene glycol adipate). Polym Bull 70:3487–3500

    Article  CAS  Google Scholar 

  48. Zhang H, Fang J, Ge H, Han L, Wang X, Hao Y, Han C, Dong L (2013) Thermal, mechanical, and rheological properties of polylactide/poly(1,2-propylene glycol adipate). Polym Eng Sci 53:112–118

    Article  CAS  Google Scholar 

  49. Phetwarotaia W, Phusuntic N, Aht-Ong D (2019) Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chinese J Polym Sci 37:68–78

    Article  CAS  Google Scholar 

  50. Li F, Liang J, Zhang S, Zhu B (2015) Tensile properties of polylactide/poly(ethylene glycol) blends. J Polym Environ 23:407–415

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Chinese Academy of Science and Technology Service Network Planning (KFJ-STS-QYZD-140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyu Han or Ye Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cheng, H., Han, C. et al. Miscibility, crystallization, mechanical, and rheological properties of poly (L-lactic acid)/poly(vinyl acetate) blends. Colloid Polym Sci 300, 763–774 (2022). https://doi.org/10.1007/s00396-022-04970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04970-6

Keywords

Navigation