Skip to main content
Log in

Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we have studied the modification process of polystyrene surface by cold atmospheric pressure plasma jet to achieve a hydrophilic surface. For this purpose, dielectric barrier discharge plasma jet with different powers in short times with radio frequency power supply and argon plasma irradiation in atmospheric pressure were used. It was found that polystyrene surface changed from hydrophobic into hydrophilic after 20-s plasma irradiation and the wettability of surface increased with time. Surface evaluation was done by measuring the water contact angle of the samples before and after the modification. Fourier transform infrared spectroscopy showed the proof for the induction of oxygen-based functional groups in polystyrene when treated with the argon plasma. Plasma parameters were examined using optical emission spectroscopy, voltage-current (VI), and temperature measurements. The relation between plasma parameters and surface modification of the polymer is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  2. Smith RW, Wei D, Apelian D (1989) Thermal plasma materials processing applications and opportunities. Plasma Chem Plasma Process 9(1):135S-165S

    Article  CAS  Google Scholar 

  3. Jeong JY et al (1998) Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Sci Technol 7(3):282

    Article  CAS  Google Scholar 

  4. Yoshihisa K et al (2013) Hydrophilic modification of plastic surface by using microwave plasma irradiation. IHI Engineering Review 46(1):29–33

    Google Scholar 

  5. Pawlat J, Samon R, Henryka D, Diatczyk J, Gizewski T (2013) RF-powered atmospheric pressure plasma jet for surface treatment. Eur Phys J Appl Phys 61:24322

    Article  Google Scholar 

  6. Misra NN, Schluter OK, Cullen PJ (2016) Cold plasma in food and agriculture fundumentals and applications. Academic Press

    Google Scholar 

  7. Sasai Y, Matsuzaki N, Kondo S, Yamauchi Y, Kuzuya M (2009) “Surface modification of polystyrene dishes using plasma techniques to enhance cell adhesion and proliferation”, iscp conference paper

  8. Conrads H, Schmidt M (2000) Plasma generation and plasma sources. Plasma Sources Sci Technol 9(4):441

    Article  CAS  Google Scholar 

  9. Liu DW, Lu X (2014) Low temperature plasma technology, CRC Press

  10. Idage SB, Badrinarayanan S (1998) Surface modification of polystyrene using nitrogen plasma. An X-ray photoelectron spectroscopy study. Langmuir 14:2780–2785

  11. Luan P, Knoll AJ, Bruggeman PJ, Oehrlein GS (2017) Plasma–surface interaction at atmospheric pressure: a case study of polystyrene etching and surface modification by Ar/O2 plasma jet. J Vac Sci Technol A 35(5)

  12. Masruroh J, Dionysius D, Santjojo H (2018) Surface modification of polystyrene by nitrogen plasma treatment. Coatings and Thin-Film Technol. https://doi.org/10.5772/intechopen.79716

  13. Novi AF, Santjojo DH, Masruroh DJ (2017) The effect of substrate temperature on surface modification of polystyrene by using nitrogen plasma. Mater Sci Eng 202:012036

  14. Olumuyiwa T, Olabanji M, Bradley JW (2012) Side-on surface modification of polystyrene with an atmospheric pressure microplasma jet. Plasma Process Polym 9(9):1

  15. Pawlat J, Kwiatkowski M, Terebun P, Murakami T (2015) RF-powered atmospheric-pressure plasma jet in surface treatment of high-impact polystyrene. IEEE Trans Plasma Sci 93:3813

    Google Scholar 

  16. Owens DK, Wendt RCJ (1969) Estimation of the surface free energy of polymers. Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  17. Smirnov AV, Atkin VS, Gorbachev IA, Grebennikov AI, Sinev IV, Simakov VV (2017) Surface modification of polystyrene thin films by RF plasma treatment. BioNanoSci 7(7):1–6

  18. Vese A, Prim G (2020) Investigation of surface modification of polystyrene by a direct and remote atmospheric-pressure plasma jet treatment. Materials 13:2435

  19. Fridman A et al (2009) Plasma chemistry, Cambridge University Press, Cambridge

  20. Wolter M, Stahl M, Kersten H (2009) Spatially resolved thermal probe measurement for the investigation of the energy influx in an rf-plasma. Vacuum 83:768–772

    Article  Google Scholar 

  21. Faravelli T, Pinciroli M, Pisano F, Bozzano G, Dente M, Ranzi E (2001) Thermal degradation of polystyrene. J Anal Appl Pyrol 60:103–121

    Article  CAS  Google Scholar 

  22. Kersten H, Deutsch H, Steffen H, Kroesen GM, Hippler R (2001) The energy balance at substrate surfaces during plasma processing. Vacuum 63:385–431

    Article  CAS  Google Scholar 

  23. Lai J, Sunderland B, Xue J, Yan S, Zhao W, Folkard M, Michael B D, Wang Y (2006) Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl Surf Sci 252(10):3375–3379

  24. Wanga L, Yan L, Zhao P, Torimoto Y, Sadakata M, Li Q (2008) Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution. Appl Surf Sci 254(13):4191–4200

  25. Vandencasteele N, Reniers F (2010) Plasma-modified polymer surfaces: characterization using XPS. J Electron Spectrosc Relat Phenom 178–179:394–408

    Article  Google Scholar 

  26. Kaminska A, Kaczmarek H, Kowalonek J (2002) Surface modification of Lexan treated by RF plasma. Eur Polym J 38:1915

    Article  CAS  Google Scholar 

  27. Inagaki N (1996) Plasma surface modification and plasma polymerization. CRC Press, 9780429156854

  28. Pawłat J, Kwiatkowski M, Terebun P, Murakami T (2015) RF-powered atmospheric-pressure plasma jet in surface treatment of high-impact polystyrene. IEEE Trans Plasma Sci

  29. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2015) Introduction to spectroscopy, 5th edition

  30. Pawlat J et al (2016) RF-powered atmospheric-pressure plasma jet in surface treatment of high-impact polystyrene. IEEE Trans Plasma Sci 44(3):314–320

    Article  CAS  Google Scholar 

  31. Rory W, Sparavigna AC (2010) Role of plasma surface treatments on wetting and adhesion. Engineering 2(06):397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jamali.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshzadmahmoudi, M., Jamali, S. & Ahmadi, E. Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet. Colloid Polym Sci 300, 103–110 (2022). https://doi.org/10.1007/s00396-021-04928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04928-0

Keywords

Navigation