Skip to main content
Log in

Evaluation of critical packing parameter in the series of polytyrosine-PEG amphiphilic copolymers

Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Here, we report on the evaluation of critical packing parameters, PC, of l-tyrosine and ethylene glycol (PEG) amphiphilic block copolymers. The copolymers were synthesized via l-tyrosine-N-carboxyanhydride ring-opening polymerization using different amino-terminated PEGs as macroinitiators. The size and shape of their associates formed in water were investigated by transmission electron microscopy and dynamic and static light scatterings. The copolymers containing 20–30 wt. % of Tyr formed rod-like micelles. The copolymers with 30–50 wt. % of Tyr formed spherical vesicles, while those with 50–80 wt. % Tyr formed irregularly shaped polymeric nanoparticles. PC of the copolymers was estimated as the ratio of the van der Waals volume of the hydrophobic block (V) to its length (L) and the cross-sectional area of the polar block (SH). The values of SH for each copolymer were calculated according to the equation obtained from the correlation analysis of the published data. The hydrophobic block length L was calculated in three ways, i.e., assuming that polytyrosine adopts (1) stretched, (2) amyloid hairpin, or (3) Gaussian coil conformation. In the latter case, the best match of the calculated PC values with the morphology of the copolymer assemblies was observed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Cabral H, Miyata K, Osada K, Kataoka K (2018) Block copolymer micelles in nanomedicine applications. Chem Rev 118:6844–6892

    Article  CAS  PubMed  Google Scholar 

  2. Chariou PL, Ortega-Rivera OA, Steinmetzn NF (2020) Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano 14:2678–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939

    Article  CAS  PubMed  Google Scholar 

  4. Zhiyentayev TM, Boltaev UT, Solov’eva AB, Aksenova NA, Glagolev NN, Chernjak AV, Melik-Nubarov NS (2014) Complexes of chlorin e6 with pluronics and polyvinylpyrrolidone: structure and photodynamic activity in cell culture. Photochem Photobiol 90:171–182

    Article  CAS  PubMed  Google Scholar 

  5. Iqbal S, Blenner M, Alexander-Bryant A, Larsen J (2020) Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromol 21:1327–1350

    Article  CAS  Google Scholar 

  6. Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S, Ren J, Wen Z, Jiang X (2011) Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjugate Chem 22:1171–1180

    Article  CAS  Google Scholar 

  7. Anachkov SE, Georgieva GS, Abezgauz L, Danino D, Kralchevsky PA (2018) Viscosity peak due to shape transition from wormlike to disklike micelles: effect of dodecanoic acid. Langmuir 34:4897–4907

    Article  CAS  PubMed  Google Scholar 

  8. Razuvaeva EA, Kulebyakina AI, Streltsov DR, Bakirov AV, Kamyshinsky RA, Kuznetsov NM, Chvalun SN, Shtykova EV (2018) Effect of composition and molecular structure of poly(l-lactic acid)/poly(ethylene oxide) block copolymers on micellar morphology in aqueous solution. Langmuir 34:15470–15482

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu T, Masuda M, Minamikawa M (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443

    Article  CAS  PubMed  Google Scholar 

  10. Israelachvili J, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  11. Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condensed Matt Phys Article ID 151683, 22 pages

  12. Khalil RA, Zarari AA (2014) Theoretical estimation of the critical packing parameter of amphiphilic self-assembled aggregates. Appl Surface Sci 318:85–89

    Article  CAS  Google Scholar 

  13. Oremusová J, Vitková Z, Vitko A, Tárník M, Miklovičová E, Ivánková O, Murgaš J, Krchňák D (2019) Effect of molecular composition of block and temperature on micellar properties of ionic surfactants with C12 alkyl chain. Molecules 24:651

    Article  PubMed Central  CAS  Google Scholar 

  14. Voggel M, Meinusch RM, Siewert V, Kunkel M, Wittmann V, Polarz S (2018) Sweet surfactants: packing parameter-invariant amphiphiles as emulsifiers and capping agents for morphology control of inorganic particles. Soft Matter 14:7214–7227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277

    Article  CAS  PubMed  Google Scholar 

  16. Holder SJ, Sommerdijk NAJM (2011) New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polym Chem 2:1018–1028

    Article  CAS  Google Scholar 

  17. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Yang S, Yu X, Zheng JX, Ma J, Xua J, Zhua M (2012) Hydrogen bonding effect on micellization and morphological transformations of the polystyrene-block-poly(ethylene oxide) micelles. Soft Matter 8:10307–10313

    Article  CAS  Google Scholar 

  19. Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731

    Article  CAS  PubMed  Google Scholar 

  20. Jain S, Gong X, Scriven LE, Bates FS (2006) Disordered network state in hydrated block-copolymer surfactants. Phys Rev Lett 96:138304

  21. Battaglia G, Ryan AJ (2005) The evolution of vesicles from bulk lamellar gels. Nat Mater 4:869–876

    Article  CAS  PubMed  Google Scholar 

  22. Battaglia G, Ryan AJ (2006) Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules 39:798–805

    Article  CAS  Google Scholar 

  23. Huang J, Hastings CL, Duffy GP, Kelly HM, Raeburn J, Adams DJ, Heise A (2013) A supramolecular hydrogel with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromol 14:200–206

    Article  CAS  Google Scholar 

  24. Kirkham S, Castelletto V, Hamley IW, Reza M, Ruokolainen J, Hermida-Merino D, Bilalis P, Iatrou H (2016) Self-assembly of telechelic tyrosine end-capped PEO and poly(alanine) polymers in aqueous solution. Biomacromol 17:1186–1197

    Article  CAS  Google Scholar 

  25. Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chuang E, Hori AM, Hesket CD, Shorter J (2018) Amyloid assembly and disassembly. J Cell Sci 131:jcs189928

  27. Mutter M (1978) Soluble polymers in organic synthesis: I. Preparation of polymer reagents using polyethylene glycol with terminal amino groups as polymeric component. Tetrahedron Lett 19:2839–2842

    Article  Google Scholar 

  28. Harrison DM, Garratt CJ (1970) The quantitative determination of tyrosine, 3-iodotyrosine and 3,5-diiodotyrosine in iodinated insulin preparations. FEBS Lett 11:14–16

    Article  CAS  PubMed  Google Scholar 

  29. Schurtenberger P, Newman ME (1993) In: J Buffle, HP van Leeuwen (eds) Environmental Particles, vol. 2, Lewis Publications, Boca Raton

  30. Enoki TA, Henriques VB, Lamy MT (2012) Light scattering on the structural characterization of DMPG vesicles along the bilayer anomalous phase transition. Chem Phys Lipids 165:826–837

    Article  CAS  PubMed  Google Scholar 

  31. Sitar S, Vezočnik V, Maček P, Kogej K, Pahovnik D, Žagar, (2017) Pitfalls in size characterization of soft particles by dynamic light scattering online coupled to asymmetrical flow field-flow fractionation. Anal Chem 89:11744–11752

    Article  CAS  PubMed  Google Scholar 

  32. Chakraborty S, Basu S (2015) Structural insight into the mechanism of amyloid precursor protein recognition by β-secretase 1: A molecular dynamics study. Biophys Chem 202:1–12

    Article  CAS  PubMed  Google Scholar 

  33. Goodman M, Hutchinson J (1966) The mechanisms of polymerization of N-unsubstituted N-carboxyanhydrides. J Am Chem Soc 88:3627–3630

    Article  CAS  Google Scholar 

  34. Guillaneuf Y, Castignolles P (2008) Using apparent molecular weight from SEC in controlled/living polymerization and kinetics of polymerization. J Polymer Sci 46:897–911

    CAS  Google Scholar 

  35. Polymer Handbook, 4th Ed., Edited by Brandrup J, Immergut EH, Grulke EA, John Wiley and Sons, 1999, p. VII-32

  36. American Polymer Standards Corporation, Providing Molecular Weight Determination Services and Polymer Standards since 1983, http://www.ampolymer.com/Mark-Houwink.html

  37. Schärtle W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Scattering from polymer solutions and nanoparticle Dispersions. Springer, Berlin-Heidelberg: 115–138

  38. Zhao YH, Abraham MH, Zissimos AM (2003) Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J Org Chem 68:7368–7373

    Article  CAS  PubMed  Google Scholar 

  39. Chakraborty T, Ghosh S, Moulik SP (2005) Micellization and related behavior of binary and ternary surfactant mixtures in aqueous medium: cetyl pyridinium chloride (CPC), cetyl trimethyl ammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) derived system. J Phys Chem B 109:14813–14823

    Article  PubMed  CAS  Google Scholar 

  40. Serafini P, Fernández-Leyes M, Sánchez MJ, Pereyra RB, Schulz EP, Durand GA, Schulz PC, Ritacco HA (2018) The aqueous Triton X-100 - Dodecyltrimethylammonium bromide micellar mixed system. Experimental results and thermodynamic analysis. Colloid Surf A - Physicochem Eng Asp 20 127-135

    Article  CAS  Google Scholar 

  41. Sulthana SB, Rao PVC, Bhat SGT, Nakano TY, Sugihara G, Rakshit AK (2000) Solution Properties of Nonionic Surfactants and Their Mixtures: Polyoxyethylene (10) Alkyl Ether [CnE10] and MEGA-10. Langmuir 16: 980–987

    Article  CAS  Google Scholar 

  42. Montalvo G, Pons R, Zhang G, Díaz M, Valiente M (2013) Structure and Phase Equilibria of the Soybean Lecithin/PEG 40 Monostearate/Water System. Langmuir 29: 14369-14379.

    Article  CAS  PubMed  Google Scholar 

  43. Aveyard R, Binks BP, Esquena J, Fletcher PDI (2002) Flocculation transitions of weakly charged oil-in-water emulsions stabilized by different surfactants. Langmuir 2002:3487–3494

  44. Abel S, Waks M, Marchi M, Urbach W (2006) Effect of Surfactant Conformation on the Structures of Small Size Nonionic Reverse Micelles: A Molecular Dynamics Simulation Study. Langmuir 22: 9112–9120.

    Article  CAS  PubMed  Google Scholar 

  45. Chang L-C, Lin C-Y, Kuo M-W, Gau C-S (2005) Interactions of Pluronics with phospholipid monolayers at the air–water interface. J Colloid Interface Sci 285: 640–652

    Google Scholar 

  46. Cho C-S, Nagata R, Yagawa A, Takahashi S, Kunou M, Akaike T (1990) Monolayers of poly(γ-benzyl L-glutamate)/polyether block copolymers on the air/water interface. J Polymer Sci Polym Lett Ed 28: 89–93

    Article  CAS  Google Scholar 

  47. Corvis Y, Manta S, Thebault C, Couture O, Dhotel H, Michel J-P, Seguin J, Bessodes M, Espeau P, Pichon C, Richard C, Mignet N (2020) Novel perfluorinated triblock amphiphilic copolymers for lipid shelled microbubble stabilization. Langmuir 34: 9744–9753

    Article  CAS  Google Scholar 

  48. Baekmark TR, Elender G, Lasic DD, Sackmann E (1995) Conformational transitions of mixed monolayers of phospholipids and poly(ethy1ene oxide) lipopolymers and interaction forces with solid surfaces. Langmuir 11: 3975–3987

    Article  Google Scholar 

  49. Chou T-H, Chu I-M (2002) Behavior of DSPC/DSPE-PEG2000 mixed monolayers at the air/water interface. Colloid Surf A Physicochem Eng A 211: 267–274

    Article  Google Scholar 

  50. Johnsson M, Hansson P, Edwards K (2001) Spherical micelles and other self-assembled structures in dilute aqueous mixtures of poly(ethylene glycol) lipids. J Phys Chem B 105:8420–8430

    Article  CAS  Google Scholar 

  51. Chou TH, Chu IM (2002) Behavior of DSPC/DSPEPEG2000 mixed monolayers at the air/water interface. Colloid Surf A: Physicochem Eng A 2002, V. 211, 267274

  52. da Silva AMG, Filipe EJM, d’Oliveira JMR, Martinho JMG (1996) Interfacial Behavior of Poly(styrene)-Poly(ethylene oxide) Diblock Copolymer Monolayers at the Air-Water Interface. Hydrophilic Block Chain Length and Temperature Influence. Langmuir 12:6547–6553

    Article  Google Scholar 

  53. de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

  54. Marsh D, Bartucci R, Sportelli L (2003) Lipid membranes with grafted polymers: physicochemical aspects. Biochim Biophys Acta 1615:33–59

  55. Beychok S, Fasman GD (1964) Circular Dichroism of Poly-L-tyrosine. Biochemistry 3:1675–1678

  56. Flory PJ (1969) Statistical mechanics of chain molecules, Interscience Publishers, p 432

  57. Betancourt MR (2016) Modeling bond correlations in denatured proteins and polypeptides. Biopolymers 105:313–323

  58. Hanke F, Serr A, Kreuzer HJ, Netz RR (2010) Stretching single polypeptides: The effect of rotational constraints in the backbone. EPL 92:53001

  59. Rosales AM, Murnen HK, Kline SR, Zuckermann RN, Segalman RA (2012) Determination of the persistence length of helical and non-helical polypeptoids in solution. Soft Matter 8:3673–3680

  60. Danielsson J, Andersson AQ, Jarvet J, Gräslund A (2006) 15N relaxation study of the amyloid β-peptide: structural propensities and persistence length. Magn Reson Chem 44: S114–S121

  61. Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N, Dothager RS, Seifert S, Thiyagarajan P, Sosnick TS, Hasan MZ, Pande VS, Ruczinski I, Doniach S, Plaxco KW (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. PNAS 101:12491–12496.

  62. Floudas G, Spiess HW (2009) Self-assembly and dynamics of polypeptides. Macromol Rapid Commun 30:278–298

Download references

Funding

The authors acknowledge Russian Foundation for Basic Research for the financial support, grant No. 03–18-01234a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay S. Melik-Nubarov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2725 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakimov, N.P., Zotkin, M.A., Dets, E.A. et al. Evaluation of critical packing parameter in the series of polytyrosine-PEG amphiphilic copolymers. Colloid Polym Sci 299, 1543–1555 (2021). https://doi.org/10.1007/s00396-021-04853-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04853-2

Keywords

Navigation