Skip to main content
Log in

Exploring the structure of sol-gel-derived hybrids for immobilization of RNA: Influence of RNA content

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, RNA oligonucleotides (yeast) were immobilized in silica (SiO2)/polyethylene glycol (PEG) hybrid particles. Two different particulate hybrids containing 55 and 110 μg RNA per g of SiO2 precursor were prepared using hydrous sol-gel route at room temperature. The molar PEG:TEOS ratio was kept at 0.65. The structural development in RNA-immobilized hybrids was characterized using X-ray diffraction (XRD), gas adsorption (N2), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopy techniques. RNA oligonucleotides were immobilized in pores close to surface; however, they were immobilized in interior structure when PEG hybridization was performed. Along with structural differences that occurred by increasing the RNA load, RNA immobilization in the hybrid silica/PEG network could be performed without phase separation. Doubling the RNA content resulted in plate-like particle formation. In the overall, results indicate that oligonucleotides could be effectively shielded in the interior mesopores of the silica/PEG hybrids. They did not leak out of particles into the tris-EDTA buffer up to 48 h. This work indicated that RNA-immobilized silica/PEG matrices are promising candidates for use in stationary biological tools that require maximized level of oligo-loading capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. https://doi.org/10.1016/j.omtn.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J (2017) siRNA-nanoparticle conjugate in gene silencing: a future cure to deadly diseases? Mater Sci Eng C 76:1378–1400. https://doi.org/10.1016/j.msec.2017.03.009

    Article  CAS  Google Scholar 

  3. Zhi D, Zhao Y, Cui S, Chen H, Zhang S (2016) Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomater 36:21–41. https://doi.org/10.1016/j.actbio.2016.03.048

    Article  CAS  PubMed  Google Scholar 

  4. Deng Y, Chen Y, Zhou X (2018) Simultaneous sensitive detection of lead(II), mercury(II) and silver ions using a new nucleic acid-based fluorescence sensor. Acta Chim Slov 65:271–277. https://doi.org/10.17344/acsi.2017.3620

    Article  CAS  Google Scholar 

  5. Xu H, Zhu X, Wang J, Lin Z, Chen G (2019) Electrochemiluminescent functional nucleic acids-based sensors for food analysis. Luminescence 34:308–315. https://doi.org/10.1002/bio.3596

    Article  PubMed  Google Scholar 

  6. Wiraja C, Yeo DC, Lio DCS, Zheng M, Xu C (2019) Functional imaging with nucleic-acid-based sensors: technology, application and future healthcare prospects. ChemBioChem 20:437–450. https://doi.org/10.1002/cbic.201800430

    Article  CAS  PubMed  Google Scholar 

  7. Kang G, Lin X (2006) RNA modified electrodes for simultaneous determination of dopamine and uric acid in the presence of high amounts of ascorbic acid. Electroanalysis 18:2458–2466. https://doi.org/10.1002/elan.200603701

    Article  CAS  Google Scholar 

  8. Wang M, Li X, Ma Y, Gu H (2013) Endosomal escape kinetics of mesoporous silica-based system for efficient siRNA delivery. Int J Pharm 448:51–57. https://doi.org/10.1016/j.ijpharm.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  9. Monton MRN, Forsberg EM, Brennan JD (2012) Tailoring sol-gel-derived silica materials for optical biosensing. Chem Mater 24:796–811. https://doi.org/10.1021/cm202798e

    Article  CAS  Google Scholar 

  10. Mehne J, Markovic G, Pröll F, Schweizer N, Zorn S, Schreiber F, Gauglitz G (2008) Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Anal Bioanal Chem 391:1783–1791. https://doi.org/10.1007/s00216-008-2066-0

    Article  CAS  PubMed  Google Scholar 

  11. Sharma S, Johnson RW, Desai TA (2004) XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens Bioelectron 20:227–239. https://doi.org/10.1016/j.bios.2004.01.034

    Article  CAS  PubMed  Google Scholar 

  12. Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Surface modification for direct immunoprobes. Biosens Bioelectron 11:579–590. https://doi.org/10.1016/0956-5663(96)83293-3

    Article  CAS  PubMed  Google Scholar 

  13. Kapusuz D (2019) Sol–gel derived silica/polyethylene glycol hybrids as potential oligonucleotide vectors. J Mater Res 34:3787–3797. https://doi.org/10.1557/jmr.2019.341

    Article  CAS  Google Scholar 

  14. Vazquez NI, Gonzalez Z, Ferrari B, Castro Y (2017) Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Bol la Soc Esp Ceram y Vidr 56:139–145. https://doi.org/10.1016/j.bsecv.2017.03.002

    Article  Google Scholar 

  15. Gonçalves MC (2018) Sol-gel silica nanoparticles in medicine: a natural choice. Design, synthesis and products. Molecules 23:2021. https://doi.org/10.3390/molecules23082021

    Article  CAS  PubMed Central  Google Scholar 

  16. Kapusuz D, Durucan C (2013) Synthesis of DNA-encapsulated silica elaborated by sol–gel routes. J Mater Res 28:175–184. https://doi.org/10.1557/jmr.2012.309

    Article  CAS  Google Scholar 

  17. Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639–6650. https://doi.org/10.3390/ijms13066639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Misran H, Salim MA, Ramesh S (2018) Effect of Ag nanoparticles seeding on the properties of silica spheres. Ceram Int 44:5901–5908. https://doi.org/10.1016/j.ceramint.2017.12.118

    Article  CAS  Google Scholar 

  19. Dovbeshko GI, Chegel VI, Gridina NY, Repnytska OP, Shirshov YM, Tryndiak VP, Todor IM, Solyanik GI (2002) Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers 67:470–486. https://doi.org/10.1002/bip.10165

    Article  CAS  PubMed  Google Scholar 

  20. Gatti C, Houssier C, Fredericq E (1975) Binding of ethidium bromide to ribosomal RNA. Biochim Biophys Acta 407:308–319. https://doi.org/10.1016/0005-2787(75)90098-2

    Article  CAS  PubMed  Google Scholar 

  21. Blanco A, Blanco G (2017) Nucleic acids. In: Blanco A, Blanco GBT-MB (eds). Elsevier, Medical Biochemistry, pp 121–140

    Google Scholar 

  22. Neault JF, Tajmir-Riahi HA (1997) RNA−aspirin interaction studied by FTIR difference spectroscopy. J Phys Chem B 101:114–116. https://doi.org/10.1021/jp9619292

    Article  CAS  Google Scholar 

  23. Tajmir-Riahi HA, N’Soukpoé-Kossi CN, Joly D (2009) Structural analysis of protein-DNA and protein-RNA interactions by FTIR, UV-visible and CD spectroscopic methods. Spectroscopy 23:81–101. https://doi.org/10.3233/SPE-2009-0371

    Article  CAS  Google Scholar 

  24. Tranquillo E, Barrino F, Dal Poggetto G, Blanco I (2019) Sol–gel synthesis of silica-based materials with different percentages of PEG or PCL and high chlorogenic acid content. Materials (Basel) 12:155. https://doi.org/10.3390/ma12010155

    Article  CAS  Google Scholar 

  25. Capeletti LB, Baibich IM, Butler IS, Dos Santos JHZ (2014) Infrared and Raman spectroscopic characterization of some organic substituted hybrid silicas. Spectrochim Acta A Mol Biomol Spectrosc 133:619–625. https://doi.org/10.1016/j.saa.2014.05.072

    Article  CAS  PubMed  Google Scholar 

  26. Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J (2009) A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 30:4786–4795. https://doi.org/10.1016/j.biomaterials.2009.05.038

    Article  CAS  PubMed  Google Scholar 

  27. ALOthman Z (2012) A review: fundamental aspects of silicate mesoporous materials. Materials (Basel) 5:2874–2902. https://doi.org/10.3390/ma5122874

    Article  CAS  Google Scholar 

  28. Douthart RJ, Burnett JP, Beasley FW, Frank BH (1973) Binding of ethidium bromide to double-stranded ribonucleic acid. Biochemistry 12:214–220. https://doi.org/10.1021/bi00726a006

    Article  CAS  PubMed  Google Scholar 

  29. Rodger A, Sanders K (1999) Biomacromolecular applications of UV-visible absorption spectroscopy*. In: Lindon JCBT-E of S and S (Second E (ed) Encyclopedia of Spectroscopy and Spectrometry. Elsevier, Oxford, pp. 166–173

Download references

Funding

The author has received partial funding from Gaziantep University under the project number BAP RM.16.01

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Kapusuz.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapusuz, D. Exploring the structure of sol-gel-derived hybrids for immobilization of RNA: Influence of RNA content. Colloid Polym Sci 299, 63–72 (2021). https://doi.org/10.1007/s00396-020-04768-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04768-4

Keywords

Navigation