Skip to main content
Log in

A DSC and XPS characterization of core–shell morphology of block copolymer nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Self-assembly of amphiphilic block copolymer chains is known to produce core–shell nanoparticles, but imaging techniques have generally failed to provide clear evidence about the multiphase structure. We report herein the advantages and limitations of modulated temperature differential scanning calorimetry (MDSC) and X-ray photoelectron spectroscopy (XPS) for the morphology study of spherical poly(hydroxyethyl acrylate)-b-polystyrene diblock copolymer nanoparticles with an intensity-average diameter of 40 nm. Using lyophilized particles, MDSC is more informative than XPS since it allows the three morphological features of composite latex particles to be distinguished: polystyrene core, poly(hydroxyethyl acrylate) shell, and interface. In MDSC, phase separation is evidenced by two distinct increments of heat capacity (ΔCp) in the glass transition regions of the two blocks. By measuring ΔCp values, an interface weight fraction of 70% is measured that gradually decreases to 50% with annealing time (150 °C, 2 h), indicating a higher extent of phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Musyanovych A, Landfester K (2011) Core–shell particles. Macromolecular engineering. Wiley, pp 1209–1247

  2. Sundberg DC, Durant YG (2003) Latex particle morphology, fundamental aspects: a review. Polym React Eng 11:379–432. https://doi.org/10.1081/PRE-120024420

    Article  CAS  Google Scholar 

  3. Ramli RA, Laftah WA, Hashim S (2013) Core–shell polymers: a review. RSC Adv 3:15543–15565. https://doi.org/10.1039/C3RA41296B

    Article  CAS  Google Scholar 

  4. Ferguson CJ, Russell GT, Gilbert RG (2002) Synthesis of latices with polystyrene cores and poly(vinyl acetate) shells. 1. Use of polystyrene seeds. Polymer 43:6371–6382. https://doi.org/10.1016/S0032-3861(02)00601-8

    Article  CAS  Google Scholar 

  5. Asua JM (1997) Polymeric dispersions: principles and applications. Springer, Netherlands

    Book  Google Scholar 

  6. Wei Z, Gourevich I, Field L, Coombs N, Kumacheva E (2006) TEM imaging of polymer multilayer particles: advantages, limitations, and artifacts. Macromolecules 39:2441–2444

    Article  CAS  Google Scholar 

  7. Sommer F, Duc TM, Pirri R, Meunier G, Quet C (1995) Surface morphology of poly (butyl acrylate)/poly (methyl methacrylate) core shell latex by atomic force microscopy. Langmuir 11:440–448

    Article  CAS  Google Scholar 

  8. Gosecka M, Gosecki M (2015) Characterization methods of polymer core–shell particles. Colloid Polym Sci 293:2719–2740. https://doi.org/10.1007/s00396-015-3728-z

    Article  CAS  Google Scholar 

  9. Hourston DJ, Song M, Hammiche A et al (1997) Modulated differential scanning calorimetry: 6. Thermal characterization of multicomponent polymers and interfaces. Polymer 38:1–7. https://doi.org/10.1016/S0032-3861(96)00466-1

    Article  CAS  Google Scholar 

  10. Landfester K, Spiess HW (1998) Characterization of interphases in core–shell latexes by solid-state NMR. Acta Polymerica 49:451–464. https://doi.org/10.1002/(SICI)1521-4044(199809)49:9<451::AID-APOL451>3.0.CO;2-U

    Article  CAS  Google Scholar 

  11. Panday R, Poudel AJ, Li X, Adhikari M, Ullah MW, Yang G (2018) Amphiphilic core-shell nanoparticles: synthesis, biophysical properties, and applications. Colloids Surf B: Biointerfaces 172:68–81. https://doi.org/10.1016/j.colsurfb.2018.08.019

    Article  CAS  PubMed  Google Scholar 

  12. Le D, Keller D, Delaittre G (2019) Reactive and functional nanoobjects by polymerization-induced self-assembly. Macromol Rapid Commun 40:1800551. https://doi.org/10.1002/marc.201800551

    Article  CAS  Google Scholar 

  13. Búcsi A, Forcada J, Gibanel S, Héroguez V, Fontanille M, Gnanou Y (1998) Monodisperse polystyrene latex particles functionalized by the macromonomer technique. Macromolecules 31:2087–2097. https://doi.org/10.1021/ma971434q

    Article  Google Scholar 

  14. Li P, Zhu J, Sunintaboon P, Harris FW (2002) New route to amphiphilic core–shell polymer nanospheres: graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups. Langmuir 18:8641–8646. https://doi.org/10.1021/la0261343

    Article  CAS  Google Scholar 

  15. Xiong X-B, Falamarzian A, Garg SM, Lavasanifar A (2011) Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 155:248–261. https://doi.org/10.1016/j.jconrel.2011.04.028

    Article  CAS  PubMed  Google Scholar 

  16. Fenyves R, Schmutz M, Horner IJ, Bright FV, Rzayev J (2014) Aqueous self-assembly of giant bottlebrush block copolymer surfactants as shape-tunable building blocks. J Am Chem Soc 136:7762–7770. https://doi.org/10.1021/ja503283r

    Article  CAS  PubMed  Google Scholar 

  17. Zhu J, Tang A, Law LP, Feng M, Ho KM, Lee DKL, Harris FW, Li P (2005) Amphiphilic core–shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug Chem 16:139–146. https://doi.org/10.1021/bc049895l

    Article  CAS  PubMed  Google Scholar 

  18. Gröschel AH, Müller AHE (2015) Self-assembly concepts for multicompartment nanostructures. Nanoscale 7:11841–11876. https://doi.org/10.1039/C5NR02448J

    Article  CAS  PubMed  Google Scholar 

  19. Müllner M, Müller AHE (2016) Cylindrical polymer brushes – anisotropic building blocks, unimolecular templates and particulate nanocarriers. Polymer 98:389–401. https://doi.org/10.1016/j.polymer.2016.03.076

    Article  CAS  Google Scholar 

  20. Franken LE, Boekema EJ, Stuart MCA (2017) Transmission electron microscopy as a tool for the characterization of soft materials: application and interpretation. Adv Sci (Weinh) 4. https://doi.org/10.1002/advs.201600476

  21. Fan X, Liu J, Jia X, Liu Y, Zhang H, Wang S, Zhang B, Zhang H, Zhang Q (2017) A series of nanoparticles with phase-separated structures by 1,1-diphenylethene controlled one-step soap-free emulsion copolymerization and their application in drug release. Nano Res 10:2905–2922. https://doi.org/10.1007/s12274-017-1492-8

    Article  CAS  Google Scholar 

  22. Spontak RJ, Ryan JJ (2020) Polymer blend compatibilization by the addition of block copolymers. Compatibilization of polymer blends. Elsevier, pp 57–102

  23. Li N, Panagiotopoulos AZ, Nikoubashman A (2017) Structured nanoparticles from the self-assembly of polymer blends through rapid solvent exchange. Langmuir 33:6021–6028. https://doi.org/10.1021/acs.langmuir.7b00291

    Article  CAS  PubMed  Google Scholar 

  24. Duan M, Qiu T, Huang C, Xu G, Guo L, Li X (2013) Synthesis of poly(acrylate-styrene)/poly(acrylate-styrene) core/shell latex and TOPEM-DSC characterization. Prog Org Coat 76:216–223. https://doi.org/10.1016/j.porgcoat.2012.09.019

    Article  CAS  Google Scholar 

  25. Song M, Liao B (2004) A modulated DSC characterization of morphology of composite latex particles. Thermochim Acta 423:57–61. https://doi.org/10.1016/j.tca.2004.04.025

    Article  CAS  Google Scholar 

  26. Nzudie DT, Delmotte L, Riess G (1994) Polybutadiene-poly(methyl methacrylate) core-shell latexes studied by high-resolution solid-state 13C NMR and DSC: influence of the surface coverage of the polybutadiene seed latex and the latex composition on the interphase formation. Macromol Chem Phys 195:2723–2737. https://doi.org/10.1002/macp.1994.021950804

    Article  Google Scholar 

  27. Hourston DJ, Zhang HX, Song M, Pollock M, Hammiche A (1997) Modulated differential scanning calorimetry — VII: interfacial macromolecular diffusion in core-shell latex particles. Thermochim Acta 294:23–31. https://doi.org/10.1016/S0040-6031(96)03138-3

    Article  CAS  Google Scholar 

  28. Hourston DJ, Song M (2006) Applications of modulated temperature differential scanning calorimetry to polymer blends and related systems. In: Reading M, Hourston DJ (eds) Modulated temperature differential scanning calorimetry: theoretical and practical applications in polymer characterisation. Springer Netherlands, Dordrecht, pp 161–215

    Chapter  Google Scholar 

  29. Colombini D, Ljungberg N, Hassander H, Karlsson OJ (2005) The effect of the polymerization route on the amount of interphase in structured latex particles and their corresponding films. Polymer 46:1295–1308. https://doi.org/10.1016/j.polymer.2004.11.056

    Article  CAS  Google Scholar 

  30. Karlsson OJ, Hassander H, Colombini D (2003) The effect of first-stage polymer Tg on the morphology and thermomechanical properties of structured polymer latex particles. Comptes Rendus Chimie 6:1233–1244. https://doi.org/10.1016/j.crci.2003.07.012

    Article  CAS  Google Scholar 

  31. Stubbs JM, Sundberg DC (2005) Measuring the extent of phase separation during polymerization of composite latex particles using modulated temperature DSC. J Polym Sci B Polym Phys 43:2790–2806. https://doi.org/10.1002/polb.20558

    Article  CAS  Google Scholar 

  32. Tripathi AK, Tsavalas JG, Sundberg DC (2013) Quantitative measurements of the extent of phase separation during and after polymerization in polymer composites using DSC. Thermochim Acta 568:20–30. https://doi.org/10.1016/j.tca.2013.06.013

    Article  CAS  Google Scholar 

  33. Khan MA, Armes SP, Perruchot C, Ouamara H, Chehimi MM, Greaves SJ, Watts JF (2000) Surface characterization of poly(3,4-ethylenedioxythiophene)-coated latexes by X-ray photoelectron spectroscopy. Langmuir 16:4171–4179. https://doi.org/10.1021/la991390+

    Article  CAS  Google Scholar 

  34. Jasinski F, Teo VL, Kuchel RP, Mballa Mballa M, Thickett SC, Brinkhuis RHG, Weaver W, Zetterlund PB (2017) Synthesis and characterisation of gradient polymeric nanoparticles. Polym Chem 8:495–499. https://doi.org/10.1039/C6PY02062C

    Article  CAS  Google Scholar 

  35. Barthet C, Armes SP, Chehimi MM, Bilem C, Omastova M (1998) Surface characterization of polyaniline-coated polystyrene latexes. Langmuir 14:5032–5038. https://doi.org/10.1021/la980102r

    Article  CAS  Google Scholar 

  36. Gosecka M, Griffete N, Mangeney C, Chehimi MM, Slomkowski S, Basinska T (2011) Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Colloid Polym Sci 289:1511–1518. https://doi.org/10.1007/s00396-011-2447-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tkachenko V, Ghimbeu CM, Vaulot C et al (2019) RAFT-photomediated PISA in dispersion: mechanism, optical properties and application in templated synthesis. Polym Chem 10:2316–2326. https://doi.org/10.1039/C9PY00209J

    Article  CAS  Google Scholar 

  38. Cairns DB, Armes SP, Chehimi MM, Perruchot C, Delamar M (1999) X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole–polystyrene composites. Langmuir 15:8059–8066. https://doi.org/10.1021/la990443k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Marc Schmutz and the electron microscopy platform at the Institut Charles Sadron (CNRS, UPR 22, University of Strasbourg) are acknowledged for the cryo-TEM images and the use of the instruments.

Funding

The authors acknowledge the Ministry of Higher Education and Research in France (“Ministère de l’Enseignement Supérieur et de la Recherche” [MESR]) for the PhD fellowship of Vitalii Tkachenko.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Poly or Abraham Chemtob.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, V., Josien, L., Schrodj, G. et al. A DSC and XPS characterization of core–shell morphology of block copolymer nanoparticles. Colloid Polym Sci 298, 1095–1105 (2020). https://doi.org/10.1007/s00396-020-04676-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04676-7

Keywords

Navigation