Skip to main content
Log in

Banded spherulites and twisting lamellae in poly–ε–caprolactone

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

By crystallization of poly–ε–caprolactone (PCL) at temperatures (55 C ≥ Tc ≥ 50 C) close to the melting point (Tm = 61 C), banded spherulites form. These structures show a periodicity of P = 32 µm as determined by polarized optical microscopy (POM). In weakly-to-non-banded spherulites formed under similar conditions, a less sharp distribution of characteristic length scales is observed, that exhibits the same mean value. Within bright and dark regions of the banded spherulites, the two-dimensional molecular order parameter of different crystal directions of the lamellae is deduced from tightly focused (15 × 50 µm2) polarized infrared-spectroscopy measurements. From the oscillation of the order parameters of the crystalline \(\underline {a}\)-, \(\underline {b}\)-, and \(\underline {c}\)-axes, banding in pure PCL is proven to result from lamellae growing in a helicoidal fashion along the spherulites radius. No deviation of lamellar growth and radius is determined within experimental uncertainty (± 4). Furthermore, spatially averaged IR-microscopy results in the same characteristic polarization dependence in banded and weakly-to-non-banded spherulites. In conjunction with the mentioned characteristic length scales, we conclude that the mechanism, which results in banding, is also active in non-banded spherulites of PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shtukenberg AG, Punin YO, Gujral A, Kahr B (2014) . Angew Chem Int Ed 53(3):672. https://doi.org/10.1002/anie.201301223

    Article  CAS  Google Scholar 

  2. Woo EM, Lugito G (2015) . Eur Polym J 71:27. https://doi.org/10.1016/j.eurpolymj.2015.07.045

    Article  CAS  Google Scholar 

  3. Keith HD, Padden FJ (1959) . J Polym Sci 39(135):101. https://doi.org/10.1002/pol.1959.1203913509

    Article  CAS  Google Scholar 

  4. Keith HD, Padden FJJ (1959) . J Polym Sci 39(135):123. https://doi.org/10.1002/pol.1959.1203913510

    Article  CAS  Google Scholar 

  5. Crist B, Schultz JM (2016) . Prog Polym Sci 56:1. https://doi.org/10.1016/j.progpolymsci.2015.11.006

    Article  CAS  Google Scholar 

  6. Lotz B, Cheng SZD (2005) . Polymer 46(3):577. https://doi.org/10.1016/j.polymer.2004.07.042

    Article  CAS  Google Scholar 

  7. Keller A (1959) . J Polym Sci 39(135):151. https://doi.org/10.1002/pol.1959.1203913512

    Article  CAS  Google Scholar 

  8. Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Chem Rev 112(3). https://doi.org/10.1021/cr200297f

  9. Rosenthal M, Anokhin DV, Luchnikov VA, Davies RJ, Riekel C, Burghammer M, Bar G, Ivanov DA (2010) . IOP conference series materials science and engineering 14(1):012014. https://doi.org/10.1088/1757-899X/14/1/012014

    Article  CAS  Google Scholar 

  10. Rosenthal M, Bar G, Burghammer M, Ivanov DA (2011) . Angew Chem Int Ed 50(38):8881. https://doi.org/10.1002/anie.201102814

    Article  CAS  Google Scholar 

  11. Rosenthal M, Hernandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, Burghammer M, Ivanov DA (2013) . Macromol Rapid Commun 34(23-24):1815. https://doi.org/10.1002/marc.201300713

    Article  CAS  PubMed  Google Scholar 

  12. Xu J, Guo BH, Zhang ZM, Zhou JJ, Jiang Y, Yan S, Li L, Wu Q, Chen GQ, Schultz JM (2004) . Macromolecules 37(11):4118. https://doi.org/10.1021/ma0499122

    Article  CAS  Google Scholar 

  13. Schultz JM (2013) . Macromolecules 46(10):4227. https://doi.org/10.1021/ma400541j

    Article  CAS  Google Scholar 

  14. Gunn E, Sours R, Benedict JB, Kahr B (2006) . J Am Chem Soc 128(44):14234. https://doi.org/10.1021/ja065139+

    Article  CAS  PubMed  Google Scholar 

  15. Bassett DC, Hodge AM (1981) . Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 377(1768):25. https://doi.org/10.1098/rspa.1981.0113

    Article  CAS  Google Scholar 

  16. Bassett DC, Hodge AM (1981) . Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences 377(1768):61. https://doi.org/10.1098/rspa.1981.0115

    Article  CAS  Google Scholar 

  17. Nozue Y, Kurita R, Hirano S, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2003) . Polymer 44(20):6397. https://doi.org/10.1016/S0032-3861(03)00591-3

    Article  CAS  Google Scholar 

  18. Nozue Y, Hirano S, Kurita R, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2004) . Polymer 45(25):8299. https://doi.org/10.1016/j.polymer.2004.09.084

    Article  CAS  Google Scholar 

  19. Nozue Y, Shinohara Y, Ogawa Y, Takamizawa T, Sakurai T, Kasahara T, Yamaguchi N, Yagi N, Amemiya Y (2010) . Polymer 51(1):222. https://doi.org/10.1016/j.polymer.2009.11.031

    Article  CAS  Google Scholar 

  20. Tanaka H, Ikeda T, Nishi T (1986) . Appl Phys Lett 48(6):393. https://doi.org/10.1063/1.96562

    Article  CAS  Google Scholar 

  21. Barham PJ, Keller A (1977) . J Mater Sci 12(11):2141. https://doi.org/10.1007/BF00552234

    Article  CAS  Google Scholar 

  22. Li CY, Yan D, Cheng SZD, Bai F, He T, Chien LC, Harris FW, Lotz B (1999) . Macromolecules 32(2):524. https://doi.org/10.1021/ma981000a

    Article  CAS  Google Scholar 

  23. Li CY, Cheng SZD, Ge JJ, Bai F, Zhang J, Mann IK, Chien LC, Harris FW, Lotz B (2000) . J Am Chem Soc 122(1):72. https://doi.org/10.1021/ja993249t

    Article  CAS  Google Scholar 

  24. Rosenthal M, Portale G, Burghammer M, Bar G, Samulski ET, Ivanov DA (2012) . Macromolecules 45(18):7454. https://doi.org/10.1021/ma301446t

    Article  CAS  Google Scholar 

  25. Vaughan AS (1993) . J Mater Sci 28(7):1805. https://doi.org/10.1007/BF00595749

    Article  CAS  Google Scholar 

  26. Ikehara T, Kataoka T (2013) . Sci Rep 3:1444. https://doi.org/10.1038/srep01444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Z, Majidi C, Srolovitz DJ, Haataja M (2011) . Appl Phys Lett 98(1):011906. https://doi.org/10.1063/1.3530441

    Article  CAS  Google Scholar 

  28. Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ (2003) . J Macromol Sci Part B 42(3-4):753. https://doi.org/10.1081/MB-120021604

    Article  CAS  Google Scholar 

  29. Keith HD, Padden FJ (1996) . Macromolecules 29(24):7776. https://doi.org/10.1021/ma960634j

    Article  CAS  Google Scholar 

  30. Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA (2014) . Macromolecules 47(23):8295. https://doi.org/10.1021/ma501733n

    Article  CAS  Google Scholar 

  31. Cui X, Shtukenberg AG, Freudenthal J, Nichols S, Kahr B (2014) . J Am Chem Soc 136(14):5481. https://doi.org/10.1021/ja5013382

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Gan Z, Schultz JM, Yan S (2008) . Polymer 49(9):2342. https://doi.org/10.1016/j.polymer.2008.02.050

    Article  CAS  Google Scholar 

  33. Beekmans LGM, Vancso GJ (2000) . Polymer 41(25):8975. https://doi.org/10.1016/S0032-3861(00)00240-8

    Article  CAS  Google Scholar 

  34. Mullins WW, Sekerka RF (1963) . J Appl Phys 34(2):323. https://doi.org/10.1063/1.1702607

    Article  CAS  Google Scholar 

  35. Langer JS (1980) . Rev Mod Phys 52(1):1. https://doi.org/10.1103/RevModPhys.52.1

    Article  CAS  Google Scholar 

  36. Kajioka H, Hikosaka M, Taguchi K, Toda A (2008) . Polymer 49(6):1685. 10.1016/j.polymer.2008.01.066

    Article  CAS  Google Scholar 

  37. Kajioka H, Taguchi K, Toda A (2011) . Macromolecules 44(23):9239. https://doi.org/10.1021/ma201985h

    Article  CAS  Google Scholar 

  38. Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H (2008) . Macromolecules 41(7):2484. https://doi.org/10.1021/ma702267e

    Article  CAS  Google Scholar 

  39. Keith HD, Padden FJJ, Russell T (1989) . Macromolecules 22(2):666. https://doi.org/10.1021/ma00192a027

    Article  CAS  Google Scholar 

  40. Fritzsching KJ, Mao K, Schmidt-Rohr K (2017) . Macromolecules 50(4):1521. https://doi.org/10.1021/acs.macromol.6b02000

    Article  CAS  Google Scholar 

  41. Flory PJ (1962) . J Am Chem Soc 84(15):2857. https://doi.org/10.1021/ja00874a004

    Article  CAS  Google Scholar 

  42. Bassett DC, Keller A (1961) . The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 6(63):345. https://doi.org/10.1080/14786436108235888

    Article  CAS  Google Scholar 

  43. Gautam S, Balijepalli S, Rutledge GC (2000) . Macromolecules 33 (24):9136. https://doi.org/10.1021/ma0012503

    Article  CAS  Google Scholar 

  44. Mareau VH, Prud’homme RE (2005) . Macromolecules 38(2):398. https://doi.org/10.1021/ma0482359

    Article  CAS  Google Scholar 

  45. Duan Y, Jiang Y, Jiang S, Li L, Yan S, Schultz JM (2004) . Macromolecules 37(24):9283. https://doi.org/10.1021/ma0483165

    Article  CAS  Google Scholar 

  46. Ji J, Liao X, Bai J, Luo X, Yang Q, Li G (2015) . Colloid Polym Sci 293(8):2311. https://doi.org/10.1007/s00396-015-3621-9

    Article  CAS  Google Scholar 

  47. Li Y, Huang H, He T, Wang Z (2012) . ACS Macro Letters 1(6):718. https://doi.org/10.1021/mz300212r

    Article  CAS  Google Scholar 

  48. Nurkhamidah S, Woo EM (2012) . Colloid Polym Sci 290(3):275. https://doi.org/10.1007/s00396-011-2544-3

    Article  CAS  Google Scholar 

  49. Su CC, Woo EM, Hsieh YT (2013) . Phys Chem Chem Phys 15 (7):2495. https://doi.org/10.1039/C2CP43523C

    Article  CAS  PubMed  Google Scholar 

  50. Woo EM, Wang LY, Nurkhamidah S (2012) . Macromolecules 45(3):1375. https://doi.org/10.1021/ma202222e

    Article  CAS  Google Scholar 

  51. Woo EM, Lugito G, Tsai JH, Müller AJ (2016) . Macromolecules 49 (7):2698. https://doi.org/10.1021/acs.macromol.6b00350

    Article  CAS  Google Scholar 

  52. Lugito G, Woo EM (2017) . Macromolecules 50(15):5898. https://doi.org/10.1021/acs.macromol.7b00838

    Article  CAS  Google Scholar 

  53. Wang P, Tian Y, Wang G, Xu Y, Yang B, Lu B, Zhang W, Ji J (2015) . Colloid Polym Sci 293(9):2701. https://doi.org/10.1007/s00396-015-3690-9

    Article  CAS  Google Scholar 

  54. Kaito A, Iwakura Y, Li Y, Shimizu H (2008) . J Polym Sci B Polym Phys 46(13):1376. https://doi.org/10.1002/polb.21472

    Article  CAS  Google Scholar 

  55. Padden FJJ, Keith HD (1966) . J Appl Phys 37(11):4013. https://doi.org/10.1063/1.1707968

    Article  CAS  Google Scholar 

  56. Bassett DC (2003) . J Macromol Sci Part B 42(2):227. https://doi.org/10.1081/MB-120017116

    Article  CAS  Google Scholar 

  57. Hikima Y, Morikawa J, Hashimoto T (2013) . Macromolecules 46(4):1582. https://doi.org/10.1021/ma302560q

    Article  CAS  Google Scholar 

  58. Wang M, Vantasin S, Wang J, Sato H, Zhang J, Ozaki Y (2017) . Macromolecules 50(8):3377. https://doi.org/10.1021/acs.macromol.7b00139

    Article  CAS  Google Scholar 

  59. Zhang Y, Leblanc-Boily V, Zhao Y, Prud’homme RE (2005) . Polymer 46(19):8141. https://doi.org/10.1016/j.polymer.2005.06.114

    Article  CAS  Google Scholar 

  60. Zhao Y, Keroack D, Prud’homme R (1999) . Macromolecules 32(4):1218. https://doi.org/10.1021/ma981416o

    Article  CAS  Google Scholar 

  61. Kossack W, Schulz M, Thurn-Albrecht T, Reinmuth J, Skokow V, Kremer F (2017) . Soft Matter 13(48):9211. https://doi.org/10.1039/C7SM01988B

    Article  CAS  PubMed  Google Scholar 

  62. Phillips PJ, Rensch GJ, Taylor KD (1987) . J Polym Sci B Polym Phys 25 (8):1725. https://doi.org/10.1002/polb.1987.090250814

    Article  CAS  Google Scholar 

  63. Papadopoulos P, Sölter J., Kremer F (2007) . Eur Phys J E 24(2):193. https://doi.org/10.1140/epje/i2007-10229-9

    Article  CAS  PubMed  Google Scholar 

  64. Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F (2016) Macromolecules (9)3442. https://doi.org/10.1021/acs.macromol.6b00473

  65. Kossack W, Papadopoulos P, Heinze P, Finkelmann H, Kremer F (2010) . Macromolecules 43 (18):7532. https://doi.org/10.1021/ma101121f

    Article  CAS  Google Scholar 

  66. Unger M, Siesler HW (2009) . Appl Spectrosc 63(12):1351. https://doi.org/10.1366/000370209790109030

    Article  CAS  PubMed  Google Scholar 

  67. Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F (2017) . Macromolecules 50(3):1056. https://doi.org/10.1021/acs.macromol.6b02714

    Article  CAS  Google Scholar 

  68. Coleman MM, Zarian J (1979) . J Polym Sci Polym Phys Ed 17(5):837. https://doi.org/10.1002/pol.1979.180170509

    Article  CAS  Google Scholar 

  69. Lagaron JM, Dixon NM, Reed W, Pastor JM, Kip BJ (1999) . Polymer 40(10):2569. https://doi.org/10.1016/S0032-3861(98)00500-X

    Article  CAS  Google Scholar 

  70. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) . J Colloid Interface Sci 273 (2):381. https://doi.org/10.1016/j.jcis.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  71. Keroack D, Zhao Y, Prud’homme RE (1999) . Polymer 40(1):243. https://doi.org/10.1016/S0032-3861(98)00187-6

    Article  CAS  Google Scholar 

  72. Noda I, Dowrey AE, Haynes JL, Marcott C (2007). In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, pp 395–406

  73. Krimm S, Liang CY, Sutherland GBBM (1956) . J Chem Phys 25(3):549. https://doi.org/10.1063/1.1742963

    Article  CAS  Google Scholar 

  74. Ajji A, Zhang X, Elkoun S (2006) . Polym Eng Sci 46(9):1182. https://doi.org/10.1002/pen.20576

    Article  CAS  Google Scholar 

  75. Socrates G (2001) Infrared and raman characteristic group frequencies. Tables and charts, 3rd edn. Wiley, New York

    Google Scholar 

  76. Neese F (2012) . Wiley Interdiscip Rev Comput Mol Sci 2(1):73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  77. Clark T, Chandrasekhar J, Spitznagel GW, RaguéSchleyer PV (1983) . J Comput Chem 4(3):294. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  78. Frisch MJ, Pople JA, Binkley JS (1984) . J Chem Phys 80(7):3265. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  79. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) . J Chem Phys 72 (1):650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  80. Price FP (1959) . J Polym Sci 39(135):139. https://doi.org/10.1002/pol.1959.1203913511

    Article  CAS  Google Scholar 

  81. Cole K, Ajji A (2000). In: Ward IM, Coates PD, Dumoulin MM (eds) Solid phase processing of polymers. Progress in polymer processing. Hanser Publishers; Hanser Gardner Publications , Munich, pp 33–84

  82. Mark JE (ed) (2009) The polymer data handbook, 2nd edn. Oxford University Press, Oxford

  83. Khambatta FB, Warner F, Russell T, Stein RS (1976) . J Polym Sci Polym Phys Ed 14(8):1391. https://doi.org/10.1002/pol.1976.180140805

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the German Science Foundation for the financial support in the framework of the colloborative research center “SFB TRR 102: Polymers under multiple constraints: restricted and controlled molecular order and mobility.” Furthermore, we like to thank Martha Schulz and Prof. Thomas Thurn-Albrecht (University Halle-Wittenberg) for fruitful discussions and help with the interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Kossack.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossack, W., Kremer, F. Banded spherulites and twisting lamellae in poly–ε–caprolactone. Colloid Polym Sci 297, 771–779 (2019). https://doi.org/10.1007/s00396-019-04503-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04503-8

Keywords

Navigation