Skip to main content
Log in

Moisture-activated dynamics on crystallite surfaces in cellulose

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structural basis of the interdependence between moisture content and activation of cooperative dynamics in natural cellulose is explored using a solid state NMR experiment which is able to localize these motions to cellulose chains on the surface of the unitary crystallite. Making assumptions based on current knowledge of biosynthesis of cellulose and the dipolar line widths of 1H spectra in solids, it is shown that the sorption of moisture causes the activation of cooperative motion of cellulose chains on the surface of the cellulose crystallite in a manner which is related to the moisture content. An important implication for these results is that densification of cellulose and associated changes in the water sorption isotherm, is possible by structural relaxation on the nano, or unitary crystallite scale. The result is also discussed in term of the evolving and modern picture of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1–2):109–124. https://doi.org/10.1016/s0981-9428(00)00164-9

    Article  CAS  PubMed  Google Scholar 

  2. Olsson A-M, Salmén L (2001) Molecular mechanisms involved in creep phenomena of paper. J Appl Polym Sci 79(9):1590–1595. https://doi.org/10.1002/1097-4628(20010228)79:9<1590::aid-app70>3.0.co;2-5

    Article  CAS  Google Scholar 

  3. Olsson A-M, Salmén L, Eder M, Burgert I (2007) Mechano-sorptive creep in wood fibres. Wood Sci Technol 41(1):59–67. https://doi.org/10.1007/s00226-006-0086-5

    Article  CAS  Google Scholar 

  4. Haslach HW (2000) The moisture and rate-dependent mechanical properties of paper: a review. Mechanics of Time-Dependent Materials 4(3):169–210

    Article  CAS  Google Scholar 

  5. Fridley KJ (1992) Designing for creep in wood structures. For Prod J 42(3):23–28

    Google Scholar 

  6. De Spirito M, Missori M, Papi M, Maulucci G, Teixeira J, Castellano C, Arcovito G (2008) Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation. Phys Rev E 77(4):041801

    Article  CAS  Google Scholar 

  7. Missori M, Mondelli C, De Spirito M, Castellano C, Bicchieri M, Schweins R, Arcovito G, Papi M, Castellano AC (2006) Modifications of the mesoscopic structure of cellulose in paper degradation. Phys Rev Lett 97 (23). https://doi.org/10.1103/PhysRevLett.97.238001

  8. Kato KL, Cameron RE (1999) Structure-property relationships in thermally aged cellulose fibers and paper. J Appl Polym Sci 74(6):1465–1477. https://doi.org/10.1002/(sici)1097-4628(19991107)74:6<1465::aid-app20>3.0.co;2-3

    Article  CAS  Google Scholar 

  9. Salmen NL, Back EL (1980) Moisture-dependent thermal softening of paper, evaluated by its elastic-modulus. Tappi 63(6):117–120

    CAS  Google Scholar 

  10. Salmen NL, Back EL (1977) Influence of water on glass-transition temperature of cellulose. Tappi 60(12):137–140

    CAS  Google Scholar 

  11. Struik LCE (1978) Physical aging in amorphous polymers and other materials. Elsevier Scientific Publishing Company,

  12. Stuart HA (1959) Problems of high-polymer crystallinity. Annals of the New York Academy of Science 83(1):3–19. https://doi.org/10.1111/j.1749-6632.1960.tb40879.x

    Article  CAS  Google Scholar 

  13. Schmidt-Rohr K, Clauss J, Spiess HW (1992) Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 25(12):3273–3277. https://doi.org/10.1021/ma00038a037

    Article  CAS  Google Scholar 

  14. Pogson EM, Scott A, Garvey CJ, Lewis RA, Ieee (2010) THz-TDS of filter paper at differing humidities. 35th international conference on infrared, millimeter, and Terahertz Waves. Ieee, New York

  15. Garvey CJ, Parker IH, Simon GP (2000) “The deconvolution of wide angle x-ray diffraction patterns from paper within the two phase model.”, 54th APPITA Annual General Conference Proceedings 2:635–643

  16. Garvey C, Parker I, Knott R, Simon G (2004) Small angle scattering in the Porod region from hydrated paper sheets at varying humidities. Holzforschung 58(5):473–479

    Article  CAS  Google Scholar 

  17. Garvey C, Parker I, Simon G, Whittaker A (2006) The hydration of paper studied with solid-state magnetisation-exchange H-1 NMR spectroscopy. Holzforschung 60(4):409–416. https://doi.org/10.1515/HF.2006.064

    Article  CAS  Google Scholar 

  18. Garvey CJ (2002) The structural and dynamic changes in paper polymers caused by ambient hydration. Thesis (Ph.D.) Monash University, 2004.

  19. Garvey CJ, Khan MS, Weir MP, Garnier G (2017) Localisation of alkaline phosphatase in the pore structure of paper. Colloid Polym Sci 295(8):1293–1304. https://doi.org/10.1007/s00396-017-4037-5

    Article  CAS  Google Scholar 

  20. Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575. https://doi.org/10.1002/macp.200500008

    Article  CAS  Google Scholar 

  21. Garvey CJ, Parker IH, Simon GP, (1999) The comparison of dielectric loss spectra of paper materials in the temperature and moisture content domains. Tappi international paper physics conference. Tappi proceedings, pp 55–66

  22. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using C-13 NMR signal strengths. Solid State Nucl Magn Reson 15(1):21–29. https://doi.org/10.1016/s0926-2040(99)00043-0

    Article  CAS  PubMed  Google Scholar 

  23. Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112:91–99. https://doi.org/10.1016/j.phytochem.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  24. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420. https://doi.org/10.1093/pcp/pcf164

    Article  CAS  PubMed  Google Scholar 

  25. Strobl GR (2007) The physics of polymers: concepts for understanding their structures and behavior. Springer

  26. Kolpak FJ, Blackwell J (1976) Determination of structure of cellulose II. Macromolecules 9(2):273–278. https://doi.org/10.1021/ma60050a019

    Article  CAS  PubMed  Google Scholar 

  27. Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscopy shows the I-alpha crystal phase at near-atomic resolution. Biophys J 79(2):1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuutti L, Peltonen J, Pere J, Teleman O (1995) Identification and surface structure of crystalline cellulose studied by atomic force microscopy. J Microsc 178(1):1–6. https://doi.org/10.1111/j.1365-2818.1995.tb03573.x

    Article  CAS  Google Scholar 

  29. Krässig HA (1993) Cellulose: structure, accessibility, and reactivity. CRC Press Inc

  30. Batten GL, Nissan AH (1987) Unified theory of the mechanical-properties of paper and other h-bond-dominated solids. TAPPI J 70(9):119–123

    CAS  Google Scholar 

  31. Nissan AH (1957) The rheological behaviour of hydrogen-bonded solids 1. Primary considerations. Trans Faraday Soc 53(5):700–709. https://doi.org/10.1039/tf9575300700

    Article  CAS  Google Scholar 

  32. Nissan AH (1976) H-bond dissociation in hydrogen-bond dominated solids. Macromolecules 9(5):840–850. https://doi.org/10.1021/ma60053a026

    Article  CAS  Google Scholar 

  33. Eriksson M, Notley SM, Wagberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 8(3):912–919. https://doi.org/10.1021/bm061164w

    Article  CAS  PubMed  Google Scholar 

  34. Holmberg M, Berg J, Stemme S, Ödberg L, Rasmusson J, Claesson P (1997) Surface force studies of Langmuir–Blodgett cellulose films. J Colloid Interface Sci 186(2):369–381. https://doi.org/10.1006/jcis.1996.4657

    Article  CAS  PubMed  Google Scholar 

  35. Muller M, Czihak C, Schober H, Nishiyama Y, Vogl G (2000) All disordered regions of native cellulose show common low-frequency dynamics. Macromolecules 33(5):1834–1840. https://doi.org/10.1021/ma991227l

    Article  CAS  Google Scholar 

  36. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 108(47):E1195–E1203. https://doi.org/10.1073/pnas.1108942108

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168 (3):871−+. https://doi.org/10.1104/pp.15.00665

  38. Hediger S, Lesage A, Emsley L (2002) A new NMR method for the study of local mobility in solids and application to hydration of biopolymers in plant cell walls. Macromolecules 35(13):5078–5084. https://doi.org/10.1021/ma020065h

    Article  CAS  Google Scholar 

  39. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163(4):1558–1567. https://doi.org/10.1104/pp.113.228262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garvey C, Keckes J, Parker I, Beilby M, Lee G (2006) Polymer nanoscale morphology in Chara australis Brown cell walls studied by advanced solid state techniques. Cryptogam Algol 27(4):391–401

    Google Scholar 

  41. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state Nmr and polymers. Academic Press

  42. Hill DJT, Le TT, Whittaker AK (1994) A technique for the quantitative measurements of signal intensities in cellulose-based transformer insulators by13C CPMAS NMR. Cellulose 1(4):237–247. https://doi.org/10.1007/BF00812507

    Article  CAS  Google Scholar 

  43. Domjan A, Erdodi G, Wilhelm M, Neidhofer M, Landfester K, Ivan B, Spiess HW (2003) Structural studies of nanophase-separated poly(2-hydroxyethyl methacrylate)-l-polyisobutylene amphiphilic conetworks by solid-state NMR and small-angle x-ray scattering. Macromolecules 36(24):9107–9114. https://doi.org/10.1021/ma034891h

    Article  CAS  Google Scholar 

  44. Atalla RH, Vanderhart DL (1984) Native cellulose - a composite of 2 distinct crystalline forms. Science 223(4633):283–285. https://doi.org/10.1126/science.223.4633.283

    Article  CAS  PubMed  Google Scholar 

  45. Kulasinski K (2017) Free energy landscape of cellulose as a driving factor in the mobility of adsorbed water. Langmuir 33(22):5362–5370. https://doi.org/10.1021/acs.langmuir.7b00914

    Article  CAS  PubMed  Google Scholar 

  46. Keckes J, Burgert I, Frühmann K, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810. doi:10.1038/nmat1019 https://www.nature.com/articles/nmat1019#supplementary-information, 813

  47. Keckes J, Burgert I, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2005) In-situ WAXS studies of structural changes in wood foils and in individual wood cells during microtensile tests. Fibre Diffraction Review 13:4–51. https://doi.org/10.1382/fdr.2005.1305

    Article  Google Scholar 

  48. Crank J (1979) The mathematics of diffusion. [Eng] Clarendon Press

  49. Gupta H, Chatterjee SG (2003) Parallel diffusion of moisture in paper. Part 1: steady-state conditions. Ind Eng Chem Res 42(25):6582–6592. https://doi.org/10.1021/ie030413j

    Article  CAS  Google Scholar 

  50. Ahlen AT (1970) Diffusion of sorbed water vapor through paper and cellulose film. Tappi 53 (7):1320–1326

  51. Nilsson L, Wilhelmsson B, Stenstrom S (1993) The diffusion of water-vapor through pulp and paper. Dry Technol 11(6):1205–1225. https://doi.org/10.1080/07373939308916896

    Article  CAS  Google Scholar 

  52. Garvey CJ, Simon GP, Knott RB, Whittaker AK, Parker IH (2003) An experimental study by NMR and SANS of the ambient hydration of paper. In: Baker CF (ed) The science of papermaking: transactions of the 12th fundamental research symposium held in Oxford, September 2001, vol 1. FRC, Pulp & Paper Fundamental Research Society, pp 359–392

  53. Mark RE, Angello AJ, Thorpe JL, Perkins RW, Gillis PP (1971) Twisting energy of holocellulose fibers. J Polym Sci Part C-Polymer Symp (36):177-&

  54. Lindh EL, Terenzi C, Salmen L, Furo I (2017) Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by H-2 MAS NMR. Phys Chem Chem Phys 19(6):4360–4369. https://doi.org/10.1039/c6cp08219j

    Article  CAS  PubMed  Google Scholar 

  55. Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Calleja FJ, Ezquerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42(12):5247–5256. https://doi.org/10.1016/s0032-3861(00)00919-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was possible due to financial support from the Cooperative Research Center for Hardwood Fibre and Paper Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Garvey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garvey, C.J., Simon, G.P., Whittaker, A.K. et al. Moisture-activated dynamics on crystallite surfaces in cellulose. Colloid Polym Sci 297, 521–527 (2019). https://doi.org/10.1007/s00396-018-04464-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-04464-4

Keywords

Navigation