Skip to main content
Log in

Preparation and thermoresponsive properties of UCST-type glycopolypeptide bearing mannose pendants and 3-methyl-1,2,3-triazolium linkages in ethanol or ethanol/water solvent mixtures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of glycopolypeptides with constant main-chain lengths and bearing various mannose pendants and 3-methyl-1,2,3-triazolium linkages were synthesized by N-alkylation, ion-exchange reaction, and subsequent deprotection. 1H NMR and FTIR analysis verified their molecular structures. Their solubility and thermoresponsive properties were collectively affected by polymer structure, polymer concentration, and the nature of solvent. Glycopolypeptides bearing tetra-O-acetyl-d-(+)-mannopyranoside and 3-methyl-1,2,3-triazolium chloride linkages showed a reversible upper critical solution temperature (UCST)-type phase behavior in ethanol (EtOH) with a solution phase transition temperature (T pt) in the range of 39.7–47.4 °C depending on polymer concentration. Glycopolypeptides bearing tetra-O-acetyl-d-(+)-mannopyranoside and 3-methyl-1,2,3-triazolium iodide or 3-methyl-1,2,3-triazolium tetrafluoroborate linkages showed a reversible UCST-type phase behavior in EtOH/H2O solvent mixtures. The T pt can be adjusted in the range of about 10–50 °C by polymer concentration or the weight percentage of ethanol (f w). It increased as the polymer concentration or f w increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonduelle C, Lecommandoux S (2013) Synthetic glycopolypeptides as biomimetic analogues of natural glycoproteins. Biomacromolecules 14:2973–2983

    Article  CAS  Google Scholar 

  2. Kramer JR, Deming TJ (2014) Recent advances in glycopolypeptide synthesis. Polym Chem 5:671–682

    Article  CAS  Google Scholar 

  3. Krannig K-S, Schlaad H (2014) Emerging bioinspired polymers: glycopolypeptides. Soft Matter 10:4228–4235

    Article  CAS  Google Scholar 

  4. Hoogenboom R, Schlaad H (2017) Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym Chem 8:24–40

    Article  CAS  Google Scholar 

  5. Kramer JR, Deming TJ (2010) Glycopolypeptides via living polymerization of glycosylated-l-lysine N-carboxyanhydrides. J Am Chem Soc 132:15068–15071

    Article  CAS  Google Scholar 

  6. Huang J, Bonduelle C, Thévenot J, Lecommandoux S, Heise A (2011) Biologically active polymersomes from amphiphilic glycopeptides. J Am Chem Soc 134:119–122

    Article  Google Scholar 

  7. Kramer JR, Deming TJ (2012) Glycopolypeptides with a redox-triggered helix-to-coil transition. J Am Chem Soc 134:4112–4115

    Article  CAS  Google Scholar 

  8. Bonduelle C, Huang J, Ibarboure E, Heise A, Lecommandoux S (2012) Synthesis and self-assembly of “tree-like” amphiphilic glycopolypeptides. Chem Commun 48:8353–8355

    Article  CAS  Google Scholar 

  9. Pati D, Kalva N, Das S, Kumaraswamy G, Sen Gupta S, Ambade AV (2012) Multiple topologies from glycopolypeptide–dendron conjugate self-assembly: nanorods, micelles, and organogels. J Am Chem Soc 134:7796–7802

    Article  CAS  Google Scholar 

  10. Dhaware V, Shaikh AY, Kar M, Hotha S, Sen Gupta S (2013) Synthesis and self-assembly of amphiphilic homoglycopolypeptide. Langmuir 29:5659–5667

    Article  CAS  Google Scholar 

  11. Wang R, Xu N, Du F-S, Li Z-C (2010) Facile control of the self-assembled structures of polylysines having pendent mannose groups via pH and surfactant. Chem Commun 46:3902–3904

    Article  CAS  Google Scholar 

  12. Krannig K-S, Schlaad H (2012) pH-responsive bioactive glycopolypeptides with enhanced helicity and solubility in aqueous solution. J Am Chem Soc 134:18542–18545

    Article  CAS  Google Scholar 

  13. Krannig K-S, Sun J, Schlaad H (2014) Stimuli-responsivity of secondary structures of glycopolypeptides derived from poly(L-glutamate-co-allylglycine). Biomacromolecules 15:978–984

    Article  CAS  Google Scholar 

  14. Borase T, Ninjbadgar T, Kapetanakis A, Roche S, O’Connor R, Kerskens C, Heise A, Brougham DF (2013) Stable aqueous dispersions of glycopeptide-grafted selectably functionalized magnetic nanoparticles. Angew Chem Int Ed 52:3164–3167

    Article  CAS  Google Scholar 

  15. Kapetanakis A, Heise A (2015) Thermoresponsive glycopolypeptides with temperature controlled selective lectin binding properties. Eur Polym J 69:483–489

    Article  CAS  Google Scholar 

  16. Wang X, Ge C, Ling Y, Tang H (2015) Preparation and UCST-type phase behavior of glycopolypeptides in alcoholic solvents. RSC Adv 5:108023–108029

    Article  CAS  Google Scholar 

  17. Li M, Wang X, Xu Y, Ling Y, Tang H (2016) Preparation of glycopolypeptides bearing mannose moieties and biphenyl pendants and their upper-critical-solution-temperature-type thermoresponsive properties in alcohol/water solvent mixtures. Polym Int 65:1493–1500

    Article  CAS  Google Scholar 

  18. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  CAS  Google Scholar 

  19. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  CAS  Google Scholar 

  20. Hu Q, Deng Y, Yuan Q, Ling Y, Tang H (2014) Polypeptide ionic liquid: synthesis, characterization, and application in single-walled carbon nanotube dispersion. J Polym Sci Part A: Polym Chem 52:149–153

    Article  CAS  Google Scholar 

  21. Zhu M, Wu Y, Ge C, Ling Y, Tang H (2016) SO2-induced solution phase transition of water-soluble and α-helical polypeptides. Macromolecules 49:3542–3549

    Article  CAS  Google Scholar 

  22. Ma S, Li X, Bai L, Lan X, Zhou N, Meng F (2015) Synthesis and characterization of imidazolium-based polymerized ionic liquid crystals containing cholesteryl mesogens. Colloid Polym Sci 293:2257–2268

    Article  CAS  Google Scholar 

  23. Cui X, Qiao C, Wang S, Ding Y, Hao C, Li J (2015) Synthesis, surface properties, and antibacterial activity of polysiloxane quaternary ammonium salts containing epoxy group. Colloid Polym Sci 293:1971–1981

    Article  CAS  Google Scholar 

  24. Kohno Y, Saita S, Men Y, Yuan J, Ohno H (2015) Thermoresponsive polyelectrolytes derived from ionic liquids. Polym Chem 6:2163–2178

    Article  CAS  Google Scholar 

  25. Yoshimitsu H, Kanazawa A, Kanaoka S, Aoshima S (2012) Well-defined polymeric ionic liquids with an upper critical solution temperature in water. Macromolecules 45:9427–9434

    Article  CAS  Google Scholar 

  26. Men Y, Schlaad H, Yuan J (2013) Cationic poly(ionic liquid) with tunable lower critical solution temperature-type phase transition. ACS Macro Lett 2:456–459

    Article  CAS  Google Scholar 

  27. Deng Y, Xu Y, Wang X, Yuan Q, Ling Y, Tang H (2015) Water-soluble thermoresponsive α-helical polypeptide with an upper critical solution temperature: synthesis, characterization, and thermoresponsive phase transition behaviors. Macromol Rapid Commun 36:453–458

    Article  CAS  Google Scholar 

  28. Karjalainen E, Aseyev V, Tenhu H (2014) Counterion-induced UCST for polycations. Macromolecules 47:7581–7587

    Article  CAS  Google Scholar 

  29. Wu Y, Wang X, Ling Y, Tang H (2015) Preparation and thermoresponsive properties of helical polypeptides bearing pyridinium salts. RSC Adv 5:40772–40778

    Article  CAS  Google Scholar 

  30. Ge C, Liu S, Liang C, Ling Y, Tang H (2016) Synthesis and UCST-type phase behavior of α-helical polypeptides with Y-shaped and imidazolium pendants. Polym Chem 7:5978–5987

    Article  CAS  Google Scholar 

  31. Okafuji A, Kohno Y, Ohno H (2016) Thermoresponsive poly(ionic liquid)s in aqueous salt solutions: salting-out effect on their phase behavior and water absorption/desorption properties. Macromol Rapid Commun 37:1130–1134

    Article  CAS  Google Scholar 

  32. Tang H, Zhang D (2010) General route toward side-chain-functionalized α-helical polypeptides. Biomacromolecules 11:1585–1592

    Article  CAS  Google Scholar 

  33. Fraser RDB, Price WC (1952) Infra-red dichroism and protein structure. Nature 170:490–491

    Article  CAS  Google Scholar 

  34. Floudas G, Papadopoulos P, Klok HA, Vandermeulen GWM, Rodriguez-Hernandez J (2003) Hierarchical self-assembly of poly(γ-benzyl-l-glutamate)–poly(ethylene glycol)–poly(γ-benzyl-l-glutamate) rod–coil–rod triblock copolymers. Macromolecules 36:3673–3683

    Article  CAS  Google Scholar 

  35. Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Self-assembly and dynamics of poly(γ-benzyl-l-glutamate) peptides. Biomacromolecules 5:81–91

    Article  CAS  Google Scholar 

  36. Yuan Q, Liu W, Deng Y, Ling Y, Tang H (2015) Synthesis, characterization and phase behaviors of polypeptides bearing biphenyl mesogens and oligo-ethylene-glycol tails. Chinese J Polym Sci 33:1150–1161

    Article  CAS  Google Scholar 

  37. Zhang Y, Lu H, Lin Y, Cheng J (2011) Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 44:6641–6644

    Article  CAS  Google Scholar 

  38. Lu H, Wang J, Bai YG, Lang JW, Liu SY, Lin Y, Cheng JJ (2011) Ionic polypeptides with unusual helical stability. Nat Commun 2:206

    Article  Google Scholar 

  39. Zhang Q, Hoogenboom R (2015) Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog Polym Sci 48:122–142

    Article  CAS  Google Scholar 

  40. Liu W, Zhu M, Xiao J, Ling Y, Tang H (2016) Synthesis and UCST-type phase behavior of polypeptide with alkyl side-chains in alcohol or ethanol/water solvent mixtures. J Polym Sci Part A: Polym Chem 54:3425–3435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ling or Haoyu Tang.

Ethics declarations

Sources of financial funding and support

This work is supported by the Hunan Provincial Natural Science Foundation of China (2016JJ3110) and Xiangtan University start-up fund (12QDZ06).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xiao, J., Ge, C. et al. Preparation and thermoresponsive properties of UCST-type glycopolypeptide bearing mannose pendants and 3-methyl-1,2,3-triazolium linkages in ethanol or ethanol/water solvent mixtures. Colloid Polym Sci 295, 773–782 (2017). https://doi.org/10.1007/s00396-017-4064-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4064-2

Keywords

Navigation