Skip to main content
Log in

Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water

Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aqueous solution behavior of thermoresponsive-hydrophilic block copolypeptoids, i.e., poly(N-(n-propyl)glycine) x -block-poly(N-methylglycine) y (x = 70; y = 23, 42, 76), in the temperature range of 20–45 °C is studied. Turbidimetric analyses of the 0.1 wt% aqueous solutions reveal two cloud points at T cp∼30 and 45 °C and a clearing point in between at T cl∼42 °C. Temperature-dependent dynamic light scattering (DLS) suggest that right above the first collapse temperature, single polymer molecules assemble into large structures which upon further heating, i.e., at the clearing point temperature, disassemble into micelle-like structures. Upon further heating, the aggregates start to grow again in size, as recognized by the second cloud point, through a crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R (2016) Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem Rev 116:1753–1802

    Article  CAS  Google Scholar 

  2. Fetsch C, Grossmann A, Holz L, Nawroth JF, Luxenhofer R (2011) Polypeptoids from N-substituted glycine N-carboxyanhydrides: hydrophilic, hydrophobic, and amphiphilic polymers with poisson distribution. Macromolecules 44:6746–6758

    Article  CAS  Google Scholar 

  3. Robinson JW, Secker C, Weidner S, Schlaad H (2013) Thermoresponsive poly(N-C3 glycine)s. Macromolecules 46:580–587

    Article  CAS  Google Scholar 

  4. Guo L, Zhang DH (2009) Cyclic poly(alpha-peptoid)s and their block copolymers from N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-Carboxylanhydrides. J Am Chem Soc 131:18072–18074

    Article  CAS  Google Scholar 

  5. Lee CU, Smart TP, Guo L, Epps TH, Zhang DH (2011) Synthesis and characterization of amphiphilic cyclic diblock copolypeptoids from N-heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-carboxyanhydride. Macromolecules 44:9574–9585

    Article  CAS  Google Scholar 

  6. Lahasky SH, Hu X, Zhang D (2012) Thermoresponsive poly(α-peptoid)s: tuning the cloud point temperatures by composition and architecture. ACS Macro Lett 1:580–584

    Article  CAS  Google Scholar 

  7. Lee C-U, Lu L, Chen J, Garno JC, Zhang D (2013) Crystallization-driven thermoreversible gelation of coil-crystalline cyclic and linear diblock copolypeptoids. ACS Macro Lett 2:436–440

    Article  CAS  Google Scholar 

  8. Tao X, Du J, Wang Y, Ling J (2015) Polypeptoids with tunable cloud point temperatures synthesized from N-substituted glycine N-thiocarboxyanhydrides. Polym Chem 6:3164–3174

    Article  CAS  Google Scholar 

  9. Fetsch C, Flecks S, Gieseler D, Marschelke C, Ulbricht J, van Pée K-H, Luxenhofer R (2015) Self-assembly of amphiphilic block copolypeptoids with C 2-C 5 side chains in aqueous solution. Macromol Chem Phys 216:547–560

    Article  CAS  Google Scholar 

  10. Secker C, Völkel A, Tiersch B, Koetz J, Schlaad H (2016) Thermo-induced aggregation and crystallization of block copolypeptoids in water. Macromolecules 49:979–985

    Article  CAS  Google Scholar 

  11. Lee C-U, Li A, Ghale K, Zhang D (2013) Crystallization and melting behaviors of cyclic and linear polypeptoids with alkyl side chains. Macromolecules 46:8213–8223

    Article  CAS  Google Scholar 

  12. Fetsch C, Luxenhofer R (2013) Thermal properties of aliphatic polypeptoids. Polymers 5:112–127

    Article  Google Scholar 

  13. Lau KHA, Ren C, Sileika TS, Park SH, Szleifer I, Messersmith PB (2012) Surface-grafted Polysarcosine as a peptoid antifouling polymer brush. Langmuir 28:16099–16107

    Article  CAS  Google Scholar 

  14. Maurer PH, Subrahmanyam D, Katchalski E, Blout ER (1959) Antigenicity of polypeptides (poly alpha amino acids). J Immunol 83:193–197

    CAS  Google Scholar 

  15. Tanisaka H, Kizaka-Kondoh S, Makino A, Tanaka S, Hiraoka M, Kimura S (2008) Near-infrared fluorescent labeled Peptosome for application to cancer imaging. Bioconjug Chem 19:109–117

    Article  CAS  Google Scholar 

  16. Ulbricht J, Jordan R, Luxenhofer R (2014) On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35:4848–4861

    Article  CAS  Google Scholar 

  17. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  18. Hoogenboom R, Schlaad H (2017) Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym Chem 8:24–40

    Article  CAS  Google Scholar 

  19. Trinh LTT, Lambermont-Thijs HML, Schubert US, Hoogenboom R, Kjoniksen AL (2012) Thermoresponsive poly(2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior. Macromolecules 45:4337–4345

    Article  CAS  Google Scholar 

  20. Jakes J (1988) Testing of the constrained regularization method of inverting Laplace transform on simulated very wide quasieleastic light-scattering auto-correlation functions. Czechoslov J Phys 38:1305–1316

    Article  Google Scholar 

  21. Stepanek P (1993) Dynamic light scattering: the method and some applications. Clarendon Press, Oxford

    Google Scholar 

  22. Stepanek P, Johnsen RM (1995) Dynamic light scattering from polymer solutions: the subtraction technique. Collect Czechoslov Chem Commun 60:1941–1949

    Article  Google Scholar 

  23. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  24. Casse O, Shkilnyy A, Linders J, Mayer C, Häussinger D, Völkel A, Thünemann AF, Dimova R, Cölfen H, Meier W, Schlaad H, Taubert A (2012) Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution. Macromolecules 45:4772–4777

    Article  CAS  Google Scholar 

  25. Garanger E, MacEwan SR, Sandre O, Brulet A, Bataille L, Chilkoti A, Lecommandoux S (2015) Structural evolution of a stimulus-responsive diblock polypeptide micelle by temperature tunable compaction of its core. Macromolecules 48:6617–6627

    Article  CAS  Google Scholar 

  26. Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym Sci 268:101–117

    Article  CAS  Google Scholar 

  27. Attwood D, Collett JH, Tait CJ (1985) The micellar properties of the poly(oxyethylene) poly(oxypropylene) copolymer Pluronic-F127 in water and electrolyte solution. Int J Pharm 26:25–33

    Article  CAS  Google Scholar 

  28. Kosswig K, Stache H (1993) Die Tenside. Carl Hanser Verlag, München Wien

    Google Scholar 

  29. Zhang LF, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731

    Article  CAS  Google Scholar 

  30. Zhang L, Eisenberg A (1996) Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 118:3168–3181

    Article  CAS  Google Scholar 

  31. Yu Y, Zhang L, Eisenberg A (1998) Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers. Macromolecules 31:1144–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Antje Völkel (AUC), Sibylle Rüstig (TEM), and Sascha Prentzel are thanked for their contributions to this work. Financial support was given by the Max Planck Society and the University of Potsdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Schlaad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogomolova, A., Secker, C., Koetz, J. et al. Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water. Colloid Polym Sci 295, 1305–1312 (2017). https://doi.org/10.1007/s00396-017-4044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4044-6

Keywords

Navigation