Skip to main content
Log in

Thermal-responsive poly(N-isopropyl acrylamide)/sodium alginate hydrogels: preparation, swelling behaviors, and mechanical properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Temperature-responsive hydrogels with enhanced mechanical properties are desirable in areas such as intelligent device. In this contribution, a poly(N-isopropyl acrylamide)/sodium alginate (PNIPAM/Ca-alginate) hydrogel was prepared by a two-step strategy, obtaining a hydrogel with two kinds of cross-linking: chemical cross-linking and ionic cross-linking. The hydrogels exhibited improved mechanical properties compared with that of the PNIPAM/Na-alginate hydrogel and the compressive strength of PNIPAM/Ca-alginate hydrogels depended significantly on the cross-linking density. In particular, PNIPAM/Ca-alginate hydrogels with the cross-linking agent content of 0.036 g displayed the optimal compressive strength of 308.9 kPa among the hydrogel samples with varied amounts of cross-linking agents. The swelling tests at varying temperatures indicated that PNIPAM/Ca-alginate hydrogels exhibited negative temperature-sensitive swelling behaviors and the lower critical solution temperature (LCST) was determined to be in the temperature range of 30∼34 °C. The swelling kinetics study revealed that the mechanism of water uptake of the PNIPAM/Ca-alginate hydrogels followed a less-Fickian mode, while the entire swelling behaviors of hydrogels followed the pseudo-second-order dynamic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang ZX, Liu KL, Li J (2013) Angew Chem Int Ed 52:6180–6184

    Article  CAS  Google Scholar 

  2. Li J, Loh XJ (2008) Adv Drug Deliv Rev 60:1000–1017

    Article  CAS  Google Scholar 

  3. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) J Am Chem Soc 125:11802–11803

    Article  CAS  Google Scholar 

  4. Peng L, Zhang HJ, Feng AC, Huo M, Wang ZL, Hu J, Gao WP, Yuan JY (2015) Polym Chem 6:3652–3659

    Article  CAS  Google Scholar 

  5. Keun S, Sung K, Young W, Jin H, Ji Y, Soon H (2004) Biomaterials 25:2393–2398

    Article  Google Scholar 

  6. Gutowska A, Bae YH, Jacobs H, Feijen J, Kim SW (1994) Macromolecules 27:4167–4175

    Article  CAS  Google Scholar 

  7. Zhang HJ, Yan Q, Kang Y, Zhou LL, Zhou H, Yuan JY, Wu SZ (2012) Polymer 53:3719–3725

    Article  CAS  Google Scholar 

  8. Tsitsilianis C (2010) Soft Matter 6:2372–2388

    Article  CAS  Google Scholar 

  9. He XL, Yu S, Dong YY, Yan FY, Chen L (2009) J Mater Sci 44:4078–4086

    Article  CAS  Google Scholar 

  10. Gotzamanis GT, Tsitsilianis C, Hadijyannakou SC, Patrickios CS, Lubetsky R (2006) Macromolecules 39:678–683

    Article  CAS  Google Scholar 

  11. Zhang HJ, Pang XJ, Qi Y (2015) RSC Adv 5:89083–89091

    Article  CAS  Google Scholar 

  12. Zhang F, Hou GH, Dai SJ, Lu R, Wang CC (2012) Colloid Polym Sci 290:1341–1346

    Article  CAS  Google Scholar 

  13. Lu YP, Chen TQ, Mei AX, Chen TY, Ding YW, Zhang XH, Xu JT, Fan ZQ, Du BY (2013) Phys Chem Chem Phys 15:8276–8286

    Article  CAS  Google Scholar 

  14. Wu T, Zou G, Hu JM, Liu SY (2009) Chem Mater 21:3788–3798

    Article  CAS  Google Scholar 

  15. Zhang YF, Liu H, Dong HF, Li CH, Liu SY (2009) J Polym Sci Part A: Polym Chem 47:1636–1650

    Article  CAS  Google Scholar 

  16. Haraguchi K, Takehisa T, Fan S (2002) Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  17. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  18. Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Nature 489:133–136

    Article  CAS  Google Scholar 

  19. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  20. Okumura Y, Ito K (2001) Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  21. Hu J, Hiwatashi K, Kurokawa T, Liang SM, Wu ZL, Gong JP (2011) Macromolecules 44:7775–7781

    Article  CAS  Google Scholar 

  22. Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) Adv Mater 19:1622–1626

    Article  CAS  Google Scholar 

  23. Fei RC, George JT, Park J, Means AK, Grunlan MA (2013) Soft Matter 9:2912–2919

    Article  CAS  Google Scholar 

  24. Haraguchi K, Li HJ (2005) Angew Chem Int Ed 44:6500–6504

    Article  CAS  Google Scholar 

  25. Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY (2013) Nat Commun 4:2226

    Google Scholar 

  26. Zheng WJ, An N, Yang JH, Zhou JX, Chen YM (2015) ACS Appl Mater Interfaces 7:1758–1764

    Article  CAS  Google Scholar 

  27. Ernandes TT, Marcos RG, Michele KL, Débora BS, Celso VN, Adley FR, Marcos HK (2015) Colloid Polym Sci 293:3611–3622

    Article  Google Scholar 

  28. Yu YQ, Xu Y, Ning HS, Zhang SS (2008) Colloid Polym Sci 286:1165–1171

    Article  CAS  Google Scholar 

  29. Ma XM, Li YH, Wang WC, Ji Q, Xia YZ (2013) Europ Polym J 49:389–396

    Article  CAS  Google Scholar 

  30. Lo CW, Zhu DF, Jiang HR (2011) Soft Matter 7:5604–5609

    Article  CAS  Google Scholar 

  31. Kuo CK, Ma PX (2001) Biomaterials 22:511–521

    Article  CAS  Google Scholar 

  32. Saikia AK, Aggarwal S, Mandal UK (2013) J Polym Res 20:31

    Article  Google Scholar 

  33. Fan JC, Shi ZX, Lian M, Li H, Yin J (2013) J Mater Chem A 1:7433–7443

    Article  CAS  Google Scholar 

  34. Liu RQ, Liang SM, Tang XZ, Yan D, Li XF, Yu ZZ (2012) J Mater Chem 22:14160–14167

    Article  CAS  Google Scholar 

  35. Ilman F, Tanaka T, Kokufuta E (1991) Nature 349:400–401

    Article  Google Scholar 

  36. Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou JX, Suo Z (2013) ACS Appl Mater Interfaces 5:10418–10422

    Article  CAS  Google Scholar 

  37. Zhao XH (2014) Soft Matter 10:672–687

    Article  CAS  Google Scholar 

  38. Peppas NA, Franson NM (1983) J Polym Sci Pol Phys 21:983–997

    Article  CAS  Google Scholar 

  39. Ritger PL, Peppas NA (1987) J Control Release 5:37–42

    Article  CAS  Google Scholar 

  40. Jin X, Hsieh YL (2005) Polymer 46:5149–5160

    Article  CAS  Google Scholar 

  41. Peppas NA, Khare AR (1993) Adv Drug Deliver Rev 11:1–35

    Article  CAS  Google Scholar 

  42. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Iran Polym J 19:375–398

    CAS  Google Scholar 

  43. Peppas NA, Brannon-Peppas L (1994) J Food Eng 22:189–210

    Article  Google Scholar 

  44. Schott H (1992) J Pharm Sci 81:467–470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Nature Science Foundation of China (Nos. 51473007, 21104040), State Key Laboratory of Solid Lubrication of Lanzhou Institute of Chemical Physics (No. LSL-1501), and Innovative Research Team of Polymeric Functional Film of Beijing Technology and Business University (19008001071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., He, L. et al. Thermal-responsive poly(N-isopropyl acrylamide)/sodium alginate hydrogels: preparation, swelling behaviors, and mechanical properties. Colloid Polym Sci 294, 1959–1967 (2016). https://doi.org/10.1007/s00396-016-3951-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3951-2

Keywords

Navigation