Skip to main content
Log in

Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Tunable immobilization of bovine serum albumins (BSA) onto anionic spherical polyelectrolyte brushes (SPB) by changing BSA concentration, pH, and ionic strength was mainly observed by small-angle X-ray scattering (SAXS). Change of the BSA amount immobilized in SPB can be determined by SAXS which was confirmed by UV spectroscopy, and SAXS is the unique method to “see” the distribution of BSA in SPB. More BSA entered into brush layer upon increasing the protein concentration or decreasing the ionic strength of solutions. When pH increased from 3 to 5 (around the isoelectric point of BSA 4.9), more BSA came into the brush inner layer, while the proteins partly moved to the outer layer when pH continued to increase. After pH was higher than 7, most of BSA were desorbed from SPB. SAXS is proved to be a powerful tool to monitor the tunable immobilization and distribution of proteins in SPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bao J, Chen W, Liu TT, Zhu YL, Jin PY, Wang LY, Liu JF, Wei YG, Li YD (2007) Bifunctional Au-Fe3O4 nanopartides for protein separation. ACS Nano 1:293–298

    Article  CAS  Google Scholar 

  2. Hasanzadeh M, Shadjou N, Omidinia E (2013) Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids. Colloids Surf B: Biointerfaces 108:52–59

    Article  CAS  Google Scholar 

  3. Belegrinou S, Menon S, Dobrunz D, Meier W (2011) Solid-supported polymeric membranes. Soft Matter 7:2202–2210

    Article  CAS  Google Scholar 

  4. Bomboi F, Tardani F, Gazzoli D, Bonincontro A, La Mesa C (2013) Lysozyme binds onto functionalized carbon nanotubes. Colloids Surf B: Biointerfaces 108:16–22

    Article  CAS  Google Scholar 

  5. Liu GY, Chen CJ, Ji J (2012) Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter 8:8811–8821

    Article  CAS  Google Scholar 

  6. Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6:2427–2448

    Article  CAS  Google Scholar 

  7. Rastogi L, Arunachalam J (2013) Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Colloids Surf B: Biointerfaces 108:134–141

    Article  CAS  Google Scholar 

  8. Gu HW, Xu KM, Xu CJ, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949

    Article  Google Scholar 

  9. Boyer C, Huang X, Whittaker MR, Bulmus V, Davis TP (2011) An overview of protein-polymer particles. Soft Matter 7:1599–1614

    Article  CAS  Google Scholar 

  10. Kayitmazer AB, Quinn B, Kimura K, Ryan GL, Tate AJ, Pink DA, Dubin PL (2010) Protein specificity of charged sequences in polyanions and heparins. Biomacromolecules 11:3325–3331

    Article  CAS  Google Scholar 

  11. Kayitmazer AB, Strand SP, Tribet C, Jaeger W, Dubin PL (2007) Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyidimethylammonium chloride) versus chitosan. Biomacromolecules 8:3568–3577

    Article  CAS  Google Scholar 

  12. Xu YS, Mazzawi M, Chen KM, Sun LH, Dubin PL (2011) Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity. Biomacromolecules 12:1512–1522

    Article  CAS  Google Scholar 

  13. Chen KM, Xu YS, Rana S, Miranda OR, Dubin PL, Rotello VM, Sun LH, Guo XH (2011) Electrostatic selectivity in protein-nanoparticle interactions. Biomacromolecules 12:2552–2561

    Article  CAS  Google Scholar 

  14. Hollmann O, Steitz R, Czeslik C (2008) Structure and dynamics of alpha-lactalbumin adsorbed at a charged brush interface. Phys Chem Chem Phys 10:1448–1456

    Article  CAS  Google Scholar 

  15. Reichhart C, Czeslik C (2009) Native-like structure of proteins at a planar poly(acrylic acid) brush. Langmuir 25:1047–1053

    Article  CAS  Google Scholar 

  16. Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32:6043–6046

    Article  CAS  Google Scholar 

  17. Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schluter AD (2009) Formation of stable mesoglobules by a thermosensitive dendronized polymer. Macromolecules 42:7122–7128

    Article  CAS  Google Scholar 

  18. Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16:8719–8726

    Article  CAS  Google Scholar 

  19. Wu S, Kaiser J, Guo XH, Li L, Lu Y, Ballauff M (2012) Recoverable platinum nanocatalysts immobilized on magnetic spherical polyelectrolyte brushes. Ind Eng Chem Res 51:5608–5614

    Article  CAS  Google Scholar 

  20. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820

    Article  CAS  Google Scholar 

  21. Lu Y, Lunkenbein T, Preussner J, Proch S, Breu J, Kempe R, Ballauff M (2010) Composites of metal nanoparticles and TiO2 immobilized in spherical polyelectrolyte brushes. Langmuir 26:4176–4183

    Article  CAS  Google Scholar 

  22. Wang WH, Li L, Yu XJ, Han HY, Guo XH (2014) Distribution of magnetic nanoparticles in spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. J Polym Sci B Polym Phys 52:1681–1688

    Article  CAS  Google Scholar 

  23. Chen KM, Zhu Y, Li L, Lu Y, Guo XH (2010) Recyclable spherical polyelectrolyte brushes containing magnetic nanoparticles in core. Macromol Rapid Commun 31:1440–1443

    Article  CAS  Google Scholar 

  24. Chen KM, Zhu Y, Zhang YF, Li L, Lu Y, Guo XH (2011) Synthesis of magnetic spherical polyelectrolyte brushes. Macromolecules 44:632–639

    Article  CAS  Google Scholar 

  25. Zhu Y, Chen KM, Wang X, Guo XH (2012) Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles. Nanotechnology 23

  26. Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle x-ray scattering and Fourier transform infrared spectroscopy. Biomacromolecules 8:3674–3681

    Article  CAS  Google Scholar 

  27. Wang SY, Chen KM, Li L, Guo XH (2013) Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry. Biomacromolecules 14:818–827

    Article  CAS  Google Scholar 

  28. Wang SY, Chen KM, Xu YS, Yu XJ, Wang WH, Li L, Guo XH (2013) Protein immobilization and separation using anionic/cationic spherical polyelectrolyte brushes based on charge anisotropy. Soft Matter 9:11276–11287

    Article  CAS  Google Scholar 

  29. Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Interaction strength between proteins and polyelectrolyte brushes: a small angle X-ray scattering study. Phys Chem Chem Phys 13:17599–17605

    Article  CAS  Google Scholar 

  30. Yu XJ, Wang WH, Li L, Guo XH, Zhou ZM, Wang FC (2014) Analysis of spherical polyelectrolyte brushes by small angle X-ray scattering. Chin J Polym Sci 32:778–785

    Article  CAS  Google Scholar 

  31. Welsch N, Lu Y, Dzubiella J, Ballauff M (2013) Adsorption of proteins to functional polymeric nanoparticles. Polymer 54:2835–2849

    Article  CAS  Google Scholar 

  32. Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M (2010) Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry. J Am Chem Soc 132:3159–3163

    Article  CAS  Google Scholar 

  33. Haupt B, Neumann T, Wittemann A, Ballauff M (2005) Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes. Biomacromolecules 6:948–955

    Article  CAS  Google Scholar 

  34. Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792

    Article  CAS  Google Scholar 

  35. Welsch N, Wittemann A, Ballauff M (2009) Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. J Phys Chem B 113:16039–16045

    Article  CAS  Google Scholar 

  36. Welsch N, Becker AL, Dzubiella J, Ballauff M (2012) Core-shell microgels as “smart” carriers for enzymes. Soft Matter 8:1428–1436

    Article  CAS  Google Scholar 

  37. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo XH, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233

    Article  CAS  Google Scholar 

  38. Xu YS, Wang SY, Han HY, Chen KM, Qin L, Xu J, Wang J, Li L, Guo XH (2014) Enhancement of enzymatic acteivity by magnetic spherical polyelectrolyte brushes: a potential recycling strategy for enzymes. Langmuir 30:11156–11164

    Article  CAS  Google Scholar 

  39. Jackler G, Wittemann A, Ballauff M, Czeslik C (2004) Spherical polyelectrolyte brushes as carrier particles for proteins: an investigation of the structure of adsorbed and desorbed bovine serum albumin. Spectroscopy 18:289–299

    Article  CAS  Google Scholar 

  40. Wittemann A, Ballauff M (2004) Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy. Anal Chem 76:2813–2819

    Article  CAS  Google Scholar 

  41. Anikin K, Rocker C, Wittemann A, Wiedenmann J, Ballauff M, Nienhaus GU (2005) Polyelectrolyte-mediated protein adsorption: fluorescent protein binding to individual polyelectrolyte nanospheres. J Phys Chem B 109:5418–5420

    Article  CAS  Google Scholar 

  42. Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu YS (2013) Protein-polyelectrolyte interactions. Soft Matter 9:2553–2583

    Article  CAS  Google Scholar 

  43. Antonov M, Mazzawi M, Dubin PL (2010) Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions. Biomacromolecules 11:51–59

    Article  CAS  Google Scholar 

  44. Silva RA, Urzua MD, Petri DFS, Dubin PL (2010) Protein adsorption onto polyelectrolyte layers: effects of protein hydrophobicity and charge anisotropy. Langmuir 26:14032–14038

    Article  CAS  Google Scholar 

  45. Seyrek E, Dubin PL, Tribet C, Gamble EA (2003) Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromolecules 4:273–282

    Article  CAS  Google Scholar 

  46. Bolze J, Ballauff M, Rische T, Rudhardt D, Meixner A (2004) In situ structural characterization of semi-crystalline polymer latex particles by small-angle X-ray scattering. Macromol Chem Phys 205:165–172

    Article  CAS  Google Scholar 

  47. Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Phys Rev E 70:0614031–0614010

    Article  Google Scholar 

  48. Dingenouts N, Bolze J, Potschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. Polym Latexes Epoxide Resins Polyampholytes 144:1–47

    Article  CAS  Google Scholar 

  49. de Robillard Q, Guo X, Ballauff M, Narayanan T (2000) Spatial correlation of spherical polyelectrolyte brushes in salt-free solution as observed by small-angle X-ray scattering. Macromolecules 33:9109–9114

    Article  Google Scholar 

  50. Bolze J, Ballauff M, Kijlstra J, Rudhardt D (2003) Application of small-angle X-ray scattering as a tool for the structural analysis of industrial polymer dispersions. Macromol Mater Eng 288:495–502

    Article  CAS  Google Scholar 

  51. Wittemann A, Ballauff M (2006) Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution. Phys Chem Chem Phys 8:5269–5275

    Article  CAS  Google Scholar 

  52. Dingenouts N, Merkle R, Guo X, Narayanan T, Goerigk G, Ballauff M (2003) Use of anomalous small-angle X-ray scattering for the investigation of highly charged colloids. J Appl Crystallogr 36:578–582

    Article  CAS  Google Scholar 

  53. Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Directed motion of proteins along tethered polyelectrolytes. Phys Rev Lett 100:1583011–1583014

    Article  Google Scholar 

  54. Ballauff M (2003) Nanoscopic polymer particles with a well-defined surface: synthesis, characterization, and properties. Macromol Chem Phys 204:220–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Matthias Ballauff, Prof. Yan Lu, and Dr. Katja Henzler for their very helpful discussion on this work. The support by the NSFC Grants (51273063 and 21476143), the Fundamental Research Funds for the Central Universities, the high school specialized research fund for the doctoral program (20110074110003), 111 Project Grant (B08021), Shanghai Synchrotron Radiation Facility, European Synchrotron Radiation Facility, and the China Scholarship Council are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Xuhong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, L., Han, H. et al. Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. Colloid Polym Sci 293, 2789–2798 (2015). https://doi.org/10.1007/s00396-015-3684-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3684-7

Keywords

Navigation