Skip to main content
Log in

Detection of trace levels of atrazine using surface-enhanced Raman scattering and information visualization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The detection of trace amounts of pesticides is essential for the quality control of waters, particularly with their inevitable increasing use with the growing demand for food. In this study, we report on the detection of atrazine, a highly toxic herbicide, down to 5 × 10−12 M, which is sufficient to monitor the quality of drinking water even according to the most stringent international regulations. Such detection was performed with surface-enhanced Raman scattering (SERS) in atrazine incorporated into silver nanoparticles (AgNPs) colloids, with the SERS spectra being treated with Sammon’s mapping, an information visualization technique. In addition to providing a fingerprint of the atrazine molecules, SERS is advantageous in comparison with impedance spectroscopy and cyclic voltammetry applied to a sensor array of units made with layer-by-layer (LbL) films containing AgNPs and AuNPs. The combined use of SERS and information visualization methods is promising for monitoring water quality with regard to other pesticides, which may even approach single molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belden JB, Hanson BR, McMurry ST, Smith LM, Haukos DA (2012) Assessment of the effects of farming and conservation programs on pesticide deposition in high plains wetlands. Environ Sci Technol 46(6):3424–3432. doi:10.1021/es300316q

    Article  CAS  Google Scholar 

  2. Knauert S, Escher B, Singer H, Hollender J, Knauer K (2008) Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms. Environ Sci Technol 42(17):6424–6430. doi:10.1021/es072037q

    Article  CAS  Google Scholar 

  3. Prade L, Huber R, Bieseler B (1998) Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase - explanations for the selectivity of the enzyme in plants. Struct Fold Des 6(11):1445–1452. doi:10.1016/s0969-2126(98)00143-9

    Article  CAS  Google Scholar 

  4. Kucka M, Pogrmic-Majkic K, Fa S, Stojilkovic SS, Kovacevic R (2012) Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4. Toxicol Appl Pharmacol 265(1):19–26. doi:10.1016/j.taap.2012.09.019

    Article  CAS  Google Scholar 

  5. Rusiecki JA, De Roos A, Lee WJ, Dosemeci M, Lubin JH, Hoppin JA, Blair A, Alavanja MCR (2004) Cancer incidence among pesticide applicators exposed to atrazine in the agricultural health study. J Natl Cancer Inst 96(18):1375–1382

    Article  CAS  Google Scholar 

  6. Simpkins JW, Swenberg JA, Weiss N, Brusick D, Eldridge C, Stevens JT, Handa RJ, Hovey RC, Plant TM, Pastoor TP, Breckenridge CB (2011) Atrazine and breast cancer: a framework assessment of the toxicological and epidemiological evidence. Toxicol Sci 123(2):441–459. doi:10.1093/toxsci/kfr176

    Article  CAS  Google Scholar 

  7. Kuklenyik Z, Panuwet P, Jayatilaka NK, Pirkle JL, Calafat AM (2012) Two-dimensional high performance liquid chromatography separation and tandem mass spectrometry detection of atrazine and its metabolic and hydrolysis products in urine. J Chromatogr B Anal Technol Biomed Life Sci 901:1–8. doi:10.1016/j.jchromb.2012.05.028

    Article  CAS  Google Scholar 

  8. Bono L, Magi E (2013) Fast and selective determination of pesticides in water by automated on-line solid phase extraction liquid chromatography tandem mass spectrometry. Anal Lett 46(10):1467–1476. doi:10.1080/00032719.2013.769263

    Article  CAS  Google Scholar 

  9. dos Santos LBO, Silva MSP, Masini JC (2005) Developing a sequential injection-square wave voltammetry (SI-SWV) method for determination of atrazine using a hanging mercury drop electrode. Anal Chim Acta 528(1):21–27. doi:10.1016/j.aca.2004.10.008

    Article  Google Scholar 

  10. Guse D, Bruzek MJ, DeVos P, Brown JH (2009) Electrochemical reduction of atrazine: NMR evidence for reduction of the triazine ring. J Electroanal Chem 626(1–2):171–173. doi:10.1016/j.jelechem.2008.12.006

    Article  CAS  Google Scholar 

  11. Dai C, Feng B, Cheng Y, Ding Y, Fei J (2013) Direct electrochemistry of cytochrome p450 enzyme in polyethylene glycol-acetylene black composite film and its application for the determination of atrazine. Nanosci Nanotechnol Lett 5(6):677–683. doi:10.1166/nnl.2013.1587

    Article  CAS  Google Scholar 

  12. Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Ramita S, Pernelle C (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649(2):236–245. doi:10.1016/j.aca.2009.07.029

    Article  CAS  Google Scholar 

  13. Piletsky SA, Piletskaya EV, Elgersma AV, Yano K, Karube I, Parhometz YP, Elskaya AV (1995) Atrazine sensing by moleculary imprinted membranes. Biosens Bioelectron 10(9–10):959–964. doi:10.1016/0956-5663(95)99233-b

    Article  CAS  Google Scholar 

  14. Svorc L, Rievaj M, Bustin D (2013) Green electrochemical sensor for environmental monitoring of pesticides: determination of atrazine in river waters using a boron-doped diamond electrode. Sensors Actuator B Chem 181:294–300. doi:10.1016/j.snb.2013.02.036

    Article  CAS  Google Scholar 

  15. http://water.epa.gov/drink/contaminants/basicinformation/atrazine.cfm#four. Accessed 04/08/2013

  16. http://ec.europa.eu/food/plant/protection/evaluation/existactive/list_atrazine.pdf. Accessed 04/08/2013 2013

  17. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  18. Aroca R (2006) Surface-enhanced vibrational spectroscopy. John Wiley & Sons, Chichester

    Book  Google Scholar 

  19. Le Ru EC, Etchegoin PG (2009) Principles of surface enhanced Raman spectroscopy (and related plasmonic effects). Elsevier, Amsterdam

    Google Scholar 

  20. Aoki PHB, Furini LN, Alessio P, Aliaga AE, Constantino CJL (2013) Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev Anal Chem 32(1):55–76. doi:10.1515/revac-2012-0019

    Article  CAS  Google Scholar 

  21. Cabrer FC, Aoki PHB, Aroca RF, Constantino CJL, dos Santos DS, Job AE (2012) Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS. J Raman Spectrosc 43(4):474–477. doi:10.1002/jrs.3074

    Article  Google Scholar 

  22. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670. doi:10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  23. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  24. Constantino CJL, Lemma T, Antunes PA, Aroca R (2001) Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers. Anal Chem 73(15):3674–3678. doi:10.1021/ac0101961

    Article  CAS  Google Scholar 

  25. Xie Y, Mukamurezi G, Sun Y, Wang H, Qian H, Yao W (2012) Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy. Eur Food Res Technol 234(6):1091–1098. doi:10.1007/s00217-012-1724-9

    Article  CAS  Google Scholar 

  26. Yazdi SH, White IM (2013) Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst 138(1):100–103. doi:10.1039/c2an36232e

    Article  CAS  Google Scholar 

  27. Zhang L (2013) Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection. Appl Surf Sci 270:292–294. doi:10.1016/j.apsusc.2013.01.014

    Article  CAS  Google Scholar 

  28. Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioproc Technol 6(3):710–718. doi:10.1007/s11947-011-0774-5

    Article  CAS  Google Scholar 

  29. Riul A, dos Santos DS, Wohnrath K, Di Tommazo R, Carvalho A, Fonseca FJ, Oliveira ON Jr, Taylor DM, Mattoso LHC (2002) Artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 18(1):239–245. doi:10.1021/la011017d

  30. Aoki PHB, Volpati D, Cabrera FC, Trombini VL, Riul A Jr, Constantino CJL (2012) Spray layer-by-layer films based on phospholipid vesicles aiming sensing application via e-tongue system. Mater Sci Eng C Mater Biol Appl 32(4):862–871. doi:10.1016/j.msec.2012.02.004

    Article  CAS  Google Scholar 

  31. Crespilho FN, Zucolotto V, Siqueira JR, Constantino CJL, Nart FC, Oliveira ON Jr (2005) Immobilization of humic acid in nanostructured layer-by-layer films for sensing applications. Environ Sci Technol 39(14):5385–5389. doi:10.1021/es050552n

  32. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  33. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727. doi:10.1021/jp027460u

    Article  CAS  Google Scholar 

  34. Aoki PHB, Alessio P, Antonio De Saja J, Leopoldo Constantino CJL (2010) Incorporation of Ag nanoparticles into membrane mimetic systems composed by phospholipid layer-by-layer (LbL) films to achieve surface-enhanced Raman scattering as a tool in drug interaction studies. J Raman Spectrosc 41(1):40–48. doi:10.1002/jrs.2415

    Article  CAS  Google Scholar 

  35. Gorban A, Kegl B, Wunsch D, Zinovyev A (2007) Principal manifolds for data visualisation and dimension reduction. Springer, Berlin

    Google Scholar 

  36. Oliveira ON, Jr., Pavinatto FJ, Constantino CJL, Paulovich FV, de Oliveira MCF (2012) Information visualization to enhance sensitivity and selectivity in biosensing. Biointerphases 7 (1-4). doi:53 10.1007/s13758-012-0053-7

  37. Tejada E, Minghim R, Nonato LG (2003) On improved projection techniques to support visual exploration of multi-dimensional data sets. Inf Vis 2:218–231

    Article  Google Scholar 

  38. Sammon JW Jr (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comp C-18(5):401–409. doi:10.1109/t-c.1969.222678

    Article  Google Scholar 

  39. Minghim R, Paulovich FV, Lopes ADA (2006) Content-based text mapping using multi-dimensional projections for exploration of document collections. In: Erbacher RF, Roberts JC, Grohn MT, Borner K (eds) Visualization and data analysis 2006, vol 6060. Proceedings of SPIE. doi:60600 s 10.1117/12.650880

  40. Costa JCS, Ando RA, Camargo PHC, Corio P (2011) Understanding the effect of adsorption geometry over substrate selectivity in the surface-enhanced Raman scattering spectra of simazine and atrazine. J Phys Chem C 115(10):4184–4190. doi:10.1021/jp112021j

    Article  CAS  Google Scholar 

  41. Bonora S, Benassi E, Maris A, Tugnoli V, Ottani S, Di Foggia M (2013) Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides. J Mol Struct 1040:139–148. doi:10.1016/j.molstruc.2013.02.025

    Article  CAS  Google Scholar 

  42. Paulovich FV, Moraes ML, Maki RM, Ferreira M, Oliveira ON Jr, de Oliveira MCF (2011) Information visualization techniques for sensing and biosensing. Analyst 136(7):1344–1350. doi:10.1039/c0an00822b

  43. Aoki PHB, Carreon EGE, Volpati D, Shimabukuro MH, Constantino CJL, Aroca RF, Oliveira ON Jr, Paulovich FV (2013) SERS mapping in Langmuir-Blodgett films and single-molecule detection. Appl Spectrosc 67(5):563–569. doi:10.1366/12-06909

    Article  CAS  Google Scholar 

  44. Tolaieb B, Constantino CJL, Aroca RF (2004) Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection. Analyst 129(4):337–341. doi:10.1039/b312812a

    Article  CAS  Google Scholar 

  45. Aoki PHB, Alessio P, Riul A Jr, De Saja Saez JA, Constantino CJL (2010) Coupling surface-enhanced resonance Raman scattering and electronic tongue as characterization tools to investigate biological membrane mimetic systems. Anal Chem 82(9):3537–3546. doi:10.1021/ac902585a

    Article  CAS  Google Scholar 

  46. Carrillo-Carrion C, Simonet BM, Valcarcel M, Lendl B (2012) Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite. J Chromatogr A 1225:55–61. doi:10.1016/j.chroma.2011.12.002

    Article  CAS  Google Scholar 

  47. Riul A Jr, Dantas CAR, Miyazaki CM, Oliveira ON Jr (2010) Recent advances in electronic tongues. Analyst 135(10):2481–2495. doi:10.1039/c0an00292e

    Article  CAS  Google Scholar 

  48. Taylor DM, Macdonald AG (1987) AC admittance of the metal-insulator-electrolyte interface. J Phys D Appl Phys 20(10):1277–1283. doi:10.1088/0022-3727/20/10/010

    Article  CAS  Google Scholar 

  49. Riul A, Soto AMG, Mello SV, Bone S, Taylor DM, Mattoso LHC (2003) An electronic tongue using polypyrrole and polyaniline. Synth Met 132(2):109–116. doi:10.1016/s0379-6779(02)00107-8

    Article  CAS  Google Scholar 

  50. Zaretsky MC, Mouayad L, Melcher JR (1988) Continuum properties from interdigital electrode dielectrometry. IEEE Trans Electr Insul 23(6):897–917. doi:10.1109/14.16515

    Article  Google Scholar 

  51. Chang G, Zhang JD, Oyama M, Hirao K (2005) Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. J Phys Chem B 109(3):1204–1209. doi:10.1021/jp046652h

    Article  CAS  Google Scholar 

  52. Crespilho FN, Zucolotto V, Brett CMA, Oliveira ON Jr, Nart FC (2006) Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110(35):17478–17483. doi:10.1021/jp062098v

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies FAPESP, CNPq and CAPES and by the nBioNet network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael J. G. Rubira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubira, R.J.G., Camacho, S.A., Aoki, P.H.B. et al. Detection of trace levels of atrazine using surface-enhanced Raman scattering and information visualization. Colloid Polym Sci 292, 2811–2820 (2014). https://doi.org/10.1007/s00396-014-3332-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3332-7

Keywords

Navigation