Skip to main content
Log in

Effect of annealing on self-organized gradient film obtained from poly(3-[tris(trimethylsilyloxy)silyl] propyl methacrylate-co-methyl methacrylate)/poly(methyl methacrylate-co-n-butyl acrylate) blend latexes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effect of annealing on the self-organized morphology and component gradient distribution of films prepared from bimodal latexes blend containing 1:1 silicon-containing acrylate copolymer/silicon-free acrylate copolymer blend was studied using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy with X-ray energy-dispersive (SEM-EDX) spectrometry, and atomic force microscopy (AFM). The distribution of silicon through the whole thickness of the film as a function of annealing was investigated using confocal Raman spectroscopy (CRS). AFM results show that poly(methyl methacrylate-co-n-butyl acrylate) latex fuses to form a continuous film at 25 °C. The wettability of the acrylate components and the heterogeneous composition of poly(3-[tris(trimethylsilyloxy)silyl] propyl methacrylate-co-methyl methacrylate) result in a graded block film. ATR-FTIR and SEM-EDX measurements reveal silicon-containing components segregate at the film–air interface upon annealing. CRS further shows that the nonlinear model gradient distribution of silicon is obtained, where the content of silicon component is enhanced and it gradually varies in the bulk. When the annealing temperature increases to 120 and 180 °C, blend latexes films demonstrate varying topography and phase images, indicating phase separation is induced by annealing. Furthermore, CRS implies that the destruction of the gradient structure is attributed to the phase separation of the two blend components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Amada S, Ichikawa Y, Munekata T et al (1997) Fiber texture and mechanical graded structure of bamboo. Compos B 28B:13–20

    Article  CAS  Google Scholar 

  2. Waite JH, Lichtenegger HC, Stucky GD et al (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochem 43:7653–7662

    Article  CAS  Google Scholar 

  3. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  4. Suresh S (2001) Graded materials for resistance to contact. Science 292:2447–2451

    Article  CAS  Google Scholar 

  5. Kano Y, Akiyama S, Sano H et al (1998) ATR-FTIR and SEM gradient study of poly(2-ethylhexyl acrylate)/poly (vinylidene fluoride-co-hexafluoro acetone) blends. J Adhes 66:319–337

    Article  CAS  Google Scholar 

  6. Hexig B, Isama K, Haishima Y et al (2010) Self-organization of the compositional gradient structure in hyaluronic acid and poly(N-isopropylacrylamide) blend film. J Biomater Sci Polym Ed 21:1957–1970

    Article  CAS  Google Scholar 

  7. Ishikawa T, Yamaoka H, Harada Y et al (2002) A general process for in situ formation of functional surface layers on ceramics. Nature 416:64–67

    Article  CAS  Google Scholar 

  8. Hexig BB, Alata H, Asakawa N et al (2005) Generation of compositional-gradient structures in biodegradable, immiscible, polymer blends by intermolecular hydrogen-bonding interactions. Adv Fun Mater 15:1630–1634

    Article  CAS  Google Scholar 

  9. Zaari BN, Rajagopalan P, Kim SK et al (2004) Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 16:2133–2137

    Article  CAS  Google Scholar 

  10. Wen B, Wu G, Yu J (2004) A flat polymeric gradient material: preparation, structure and property. Polymer 45:3359–3365

    Article  CAS  Google Scholar 

  11. Chekanov YA, Pojman JA (2000) Preparation of functionally gradient materials via frontal polymerization. J Appl Polym Sci 78:2398–2404

    Article  CAS  Google Scholar 

  12. Bronstein LM, Ivanovskaya A, Mates T et al (2009) Bioinspired gradient materials via blending of polymer electrolytes and applying electric forces. J Phys Chem B 113:647–655

    Article  CAS  Google Scholar 

  13. Koide S, Asakawa N, Inoue Y et al (2008) Influence of a melt flow on generation of functionally graded structure in bulk polymeric materials under uniaxial thermal gradient. Macromol Chem Phys 209:499–507

    Article  CAS  Google Scholar 

  14. Liu H, Xu J, Li Y et al (2006) Fabrication and characterization of an organic–inorganic gradient surface made by polymethylsilsesquioxane ( PMSQ ). Macromol Rapid Commun 27:1603–1607

    Article  CAS  Google Scholar 

  15. Yamazaki K, Dong T, Asakawa N et al (2009) Fabrication of compositional-gradient biodegradable polymeric films showing self-bending deformation. Macromol Rapid Commun 30:435–441

    Article  CAS  Google Scholar 

  16. Xie X, Xiao T, Zhang Z et al (1998) Effect of interfacial tension on the formation of the gradient morphology in polymer blends. J Colloid Interface Sci 206:189–194

    Article  CAS  Google Scholar 

  17. Ikejima T, Inoue Y (2000) Experimental approaches to generate compositional gradients in the fully biodegradable polymer blend system based on poly(3-hydroxybutyric acid). Macromol Chem Phys 201:1598–1604

    Article  CAS  Google Scholar 

  18. Agari Y, Anan Y, Nomura R et al (2007) Estimation of the compositional gradient in a PVC/PMMA graded blend prepared by the dissolution–diffusion method. Polymer 48:1139–1147

    Article  CAS  Google Scholar 

  19. Agari Y, Yamamoto T, Nomura R (2006) Preparation and properties of polystyrene/SEBS blends with compositional gradients in their sheet direction. Macromol Symp 242:1–4

    Article  CAS  Google Scholar 

  20. Kano Y, Sato H, Okamoto M et al (1999) Phase separation process during solution casting of acrylate-copolymer/fluoro-copolymer blends. J Adhes Sci Tech 13:1243–1251

    Article  CAS  Google Scholar 

  21. Blondiaux N, Morgenthaler S, Pugin R et al (2008) Gradients of topographical structure in thin polymer films. Appl Surf Sci 254:6820–6825

    Article  CAS  Google Scholar 

  22. Xie XM, Chen Y, Zhang ZM et al (1999) Controls of gradient morphology and surface properties of polymer blends. Macromolecules 32:4424–4429

    Article  CAS  Google Scholar 

  23. Arda E, Pekcany O (2001) Effect of molecular weight on packing during latex film formation. J Colloid Interface Sci 234:72–78

    Article  CAS  Google Scholar 

  24. Uğur Ş, Sunay S, Pekcan O (2010) Film formation of nano-sized hard latex (PS) in soft polymer matrix (PBA): an excimer study. Polym Compos 31:1611–1619

    Article  Google Scholar 

  25. Zhao Y, Urban MW (2000) Polystyrene/poly(n-butyl acrylate) latex blend coalescence, particle size effect, and surfactant stratification: a spectroscopic study. Macromolecules 33:7573–7581

    Article  CAS  Google Scholar 

  26. Zhao Y, Urban MW (2000) Phase separation and surfactant stratification in styrene/ n-butyl acrylate copolymer and latex blend films. 17. A spectroscopic study. Macromolecules 33:2184–2191

    Article  CAS  Google Scholar 

  27. Xu GH, Dong JP, Severtson SJ et al (2009) Modifications of surfactant distributions and surface morphologies in latex films due to moisture exposure. J Phys Chem B 113:10189–10195

    Article  CAS  Google Scholar 

  28. Nikiforow I, Adams J, Konig AM et al (2010) Self-stratification during film formation from latex blends driven by differences in collective diffusivity. Langmuir 26:13162–13167

    Article  CAS  Google Scholar 

  29. Linemann RF, Malner TE, Brandsch R et al (1999) Latex blends of fluorinated and fluorine-free acrylates: emulsion polymerization and tapping mode atomic force microscopy of film formation. Macromolecules 32:1715–1721

    Article  CAS  Google Scholar 

  30. Hu YY, Zhang CC, Chen YJ et al (2010) Preparation and structure of fluorinated/non-fluorinated polyacrylate gradient emulsion blend film. Mater Lett 64:2091–2093

    Article  CAS  Google Scholar 

  31. Hu L, Zhang CC, Chen YJ et al (2010) Synthesis and silicon gradient distribution of emulsifier-free TRIS-containing acrylate copolymer. Colloids Surf A 370:72–78

    Article  CAS  Google Scholar 

  32. Chen YJ, Zhang CC, Chen XX (2006) Emulsifier-free latex of fluorinated acrylate copolymer. Euro Polymer J 42:694–701

    Article  CAS  Google Scholar 

  33. Şengül G, Demirci S, Çörekçi S et al (2009) Annealing effect on surface segregation behavior of hydroxypropylcellulose/polyethylenimine blend films. Appl Surf Sci 255:7703–7707

    Article  Google Scholar 

  34. Zhang J, Hu S, Rieger J et al (2008) Effect of annealing on the deformation mechanism of a styrene/n-butyl acrylate copolymer latex film investigated by synchrotron small-angle X-ray scattering. Macromolecules 41:4353–4357

    Article  CAS  Google Scholar 

  35. Yuan X, Huo D, Qian Q (2010) Effect of annealing on the phase structure and the properties of the film formed from P(St-co-BA)/P(MMA-co-BA) composite latex. J Colloid Interface Sci 346:72–78

    Article  CAS  Google Scholar 

  36. Colombini D, Hassander H, Karlsson OJ et al (2005) Effects of thermal annealing on the viscoelastic properties and morphology of bimodal hard/soft latex blends. J Polym Sci B Polym Phys 43:2289–2306

    Article  CAS  Google Scholar 

  37. Verploegen E, Mondal R, Bettinger CJ et al (2010) Effects of thermal annealing upon the morphology of polymer–fullerene blends. Adv Funct Mater 20:3519–3529

    Article  CAS  Google Scholar 

  38. Watts B, Belcher WJ, Thomsen L et al (2009) A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films. Macromolecules 42:8392–8397

    Article  CAS  Google Scholar 

  39. Verkholantsev VV (1995) Heterophase and self-stratifying polymer coatings. Prog Org Coat 26:31–52

    Article  CAS  Google Scholar 

  40. Hu L, Yang F, Zhang CC et al (2011) Preparation and characterization of gradient distribution of silicon in emulsion blend films. Colloid Polym Sci 289:323–331

    Article  CAS  Google Scholar 

  41. Thomas RR, Lloyd KG, Stika KM et al (2000) Low free energy surfaces using blends of fluorinated acrylic copolymer and hydrocarbon acrylic copolymer latexes. Macromolecules 33:8828–8841

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (grant no. 50673080). Chaocan Zhang wishes to acknowledge Professor Michael J. Serpe for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaocan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Zhang, C., Hu, Y. et al. Effect of annealing on self-organized gradient film obtained from poly(3-[tris(trimethylsilyloxy)silyl] propyl methacrylate-co-methyl methacrylate)/poly(methyl methacrylate-co-n-butyl acrylate) blend latexes. Colloid Polym Sci 290, 709–718 (2012). https://doi.org/10.1007/s00396-011-2582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2582-x

Keywords

Navigation