Skip to main content

Advertisement

Log in

A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ,l-glutamic acid)-capped silver nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(α,γ,l-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nanoparticles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825

    Article  CAS  Google Scholar 

  2. Ansari AA, Alhoshan M, Alsalhi MS, Aldawayyan AS (2010) Prospects of nanotechnology in clinical immunodiagnostics. Sensors 10:6535–6581

    Article  CAS  Google Scholar 

  3. Kausch-Blecken von Schmeling HH (2011) Eighty years of macromolecular science: from birth to nano-, bio- and self-assembling polymers—with slight emphasis on European contributions. Colloid Polym Sci 289(13):1407–1427

    Article  CAS  Google Scholar 

  4. Zhang WC, Wu XL, Chen HT, Gao YJ, Zhu J, Huang GS, Chu PK (2008) Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method. Acta Mater 56:2508–2513

    Article  CAS  Google Scholar 

  5. Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2011) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B Biointerfaces 82(2):513–517

    Article  CAS  Google Scholar 

  6. Debnath D, Kim C, Kim SH, Geckeler KE (2010) Solid-state synthesis of silver nanoparticles at room temperature: poly(vinylpyrrolidone) as a tool. Macromolecular Rapid Communications 31(6):549–553

    Article  CAS  Google Scholar 

  7. Zhu YP, Wang XK, Guo WL, Wang JG, Wang C (2010) Sonochemical synthesis of silver nanorods by reduction of silver nitrate in aqueous solution. Ultrason Sonochem 17(4):675–679

    Article  CAS  Google Scholar 

  8. Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214

    Article  CAS  Google Scholar 

  9. Cheng Y-J, Zeiger DN, Howarter JA, Zhang X, Lin NJ, Antonucci JM, Lin-Gibson S (2011) In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res B Appl Biomater 97B(1):124–131

    Article  CAS  Google Scholar 

  10. Vodnik VV, Bozanic DK, Dzunuzovic E, Vukovic J, Nedeljkovic JM (2010) Thermal and optical properties of silver–poly(methylmethacrylate) nanocomposites prepared by in-situ radical polymerization. Eur Polym J 46:137–144

    Article  CAS  Google Scholar 

  11. Kieda N, Messing GL (1998) Preparation of silver particles by spray pyrolysis of silver–diammine complex solutions. J Mater Res 13(6):1660–1665

    Article  CAS  Google Scholar 

  12. Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and caracterization of stable aqueous dispersion of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    Article  CAS  Google Scholar 

  13. Le AT, Le TT, Tam PD, Huy PT, Huy TQ, Hieu N, Kudrinskiy AA, Krutyakov YA (2010) Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater Sci Eng C 30:910–916

    Article  CAS  Google Scholar 

  14. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomedicine and Nanobiotechnology 2:544–568

    Article  CAS  Google Scholar 

  15. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitr 23(6):1076–1084

    Article  CAS  Google Scholar 

  16. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitr 19(7):975–983

    Article  CAS  Google Scholar 

  17. Castillo PM, Herrera JL, Fernandez-Montesinos R, Caro C, Zaderenko AP, Mejias JA, Pozo D (2008) Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands. Nanomedicine (Lond) 3(5):627–635

    Article  Google Scholar 

  18. Singh AV, Patil R, Kasture MB, Gade WN, Prasad BL (2009) Synthesis of Ag–Pt alloy nanoparticles in aqueous bovine serum albumin foam and their cytocompatibility against human gingival fibroblasts. Colloids Surf B Biointerfaces 69(2):239–245

    Article  CAS  Google Scholar 

  19. Yu D-G (2007) Formation of colloidal silver nanoparticles stabilized by Na+–poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf B Biointerfaces 59:171–178

    Article  CAS  Google Scholar 

  20. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  21. Johnston HJ, Hutchison GR, Christensen FM, Hankin S, Peters S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346

    Article  CAS  Google Scholar 

  22. Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K (2010) Nano-silver feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 4(3):284–295

    Article  CAS  Google Scholar 

  23. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84

    Article  Google Scholar 

  24. Warner JC, Cannon AS, Dye KM (2004) Green chemistry. Environmental Impact Assessment Review 24:775–799

    Article  Google Scholar 

  25. Nameroff TJ, Garant RJ, Albert MB (2004) Adoption of green chemistry: an analysis based on US patents. Res Policy 33:959–974

    Article  Google Scholar 

  26. Kuai L, Geng B, Wang S, Zhao Y, Luo Y, Jiang H (2011) Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media. Chemistry: A European Journal 17:3482–3489

    Article  CAS  Google Scholar 

  27. Agency for Toxic Substances and Disease Registry (2004) Toxicological profile for ammonia. U.S. Department of Health and Human Services, Public Health Service, September 2004, Atlanta, GA

  28. Singh M, Sinha I, Mandal RK (2009) Role of pH in the green synthesis of silver nanoparticles. Mater Lett 63:425–427

    Article  CAS  Google Scholar 

  29. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomedicine 6:677–681

    Article  CAS  Google Scholar 

  30. El-Shishtawy RM, Asiri AM, Al-Otaibi MM (2011) Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 79:1505–1510

    Article  CAS  Google Scholar 

  31. Shih IL, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225

    Article  CAS  Google Scholar 

  32. Marks LD, Howie A (1979) Multiply-twinned particles in silver catalysts. Nature 282:196–198. doi:10.1038/282196a0

    Article  CAS  Google Scholar 

  33. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research 40:1067–1076

    Article  CAS  Google Scholar 

  34. Moyes SM, Morris JF, Carr KE (2010) Macrophages increase microparticle uptake by enterocyte-like Caco-2 cell monolayers. J Anat 217:740–754

    Article  CAS  Google Scholar 

  35. Yu D, Marchiando AM, Weber CR, Raleigh DR, Wang Y, Shen L, Turner JR (2010) MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. PNAS 107(18):8237–8241

    Article  CAS  Google Scholar 

  36. Neumeyer A, Bukowski M, Veith M, Lehr C-M, Daum N (2011) Propidium iodide labeling of nanoparticles as a novel tool for the quantification of cellular binding and uptake. Nanomedicine: Nanotechnology, Biology and Medicine 4(7):410–419. doi:10.1016/j.nano.2010.12.007

    Article  Google Scholar 

  37. Bimbo LM, Mäkilä E, Laaksonen T, Lehto V, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10):2625–2633

    Article  CAS  Google Scholar 

  38. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Plasmon resonances in large noble-metal clusters. New J Phys 4:93.1–93.8

    Article  Google Scholar 

  39. Heath JR (1989) Size-dependent surface-plasmon resonances of bare silver particles. Physical Review B 40:9982–9985

    Article  CAS  Google Scholar 

  40. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimmers. J Chem Phys 120(1):357–366

    Article  CAS  Google Scholar 

  41. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S (2011) Synergistic antibacterial activity of chitosan–silver nanocomposites on staphylococcus aureus. Nanotechnology 22:135101 (9 pp)

    Article  Google Scholar 

  42. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  43. Šileikaitė A, Puišo J, Prosyčevas I, Tamulevičius S (2009) Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Materials Science (Medžiagotyra) 15(1):21–27

    Google Scholar 

  44. Kim J-S (2007) Reduction of silver nitrate in ethanol by poly(N-vinylpyrrolidone). J Ind Eng Chem 13(4):566–570

    CAS  Google Scholar 

  45. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Gold nanocages for biomedical applications. Adv Mater 19:3177–3184

    Article  CAS  Google Scholar 

  46. International Centre for Diffraction Data. Powder diffraction files: JCPDS card numbers 41-1402 and 04-0783

  47. Pragatheeswaran A, Kareem TA, Kaliani AA (2010) Effect of plasma exposure on silver nanoparticles embedded in polyvinyl alcohol. J Phys Conf Ser 208:012109

    Article  Google Scholar 

  48. Ferrando R, Baletto R (2005) Structural properties of nanoclusters: energetic, thermodynamic and kinetic effects. Rev Mod Phys 77:371–423

    Article  Google Scholar 

  49. Ajayan PM, Marks LD (1998) Quasimelting and phases of small particles. Phys Rev Lett 60:585–587

    Article  Google Scholar 

  50. Marks LD (1994) Experimental studies of small particle structures. Reports in Progress in Physics 57:603–649

    Article  CAS  Google Scholar 

  51. Chang S, Chen K, Hua Q, Ma Y, Huang W (2011) Evidence for the growth mechanisms of silver nanocubes and nanowires. J Phys Chem C 115:7979–7986

    Article  CAS  Google Scholar 

  52. Li LC, Tian Y (2007) Zeta potential. Encyclopedia of Pharmaceutical Technology Informa Healthcare USA, Inc. doi:10.1081/E-EPT-100200015

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technological Development of the Republic of Serbia, under Grant No. III45004: Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them. Desai Lab at UCSF is also acknowledged for support and NIH grant K99-DE021416. Confocal microscopy data for this study were acquired at the Nikon Imaging Center at UCSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Stevanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanović, M., Savanović, I., Uskoković, V. et al. A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ,l-glutamic acid)-capped silver nanoparticles. Colloid Polym Sci 290, 221–231 (2012). https://doi.org/10.1007/s00396-011-2540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2540-7

Keywords

Navigation