Skip to main content
Log in

Fabrication of layered double hydroxide spheres through urea hydrolysis and mechanisms involved in the formation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The goal of this study is to prepare hydrotalcite pellets and validate their potential utility in catalysts and catalysts support. Hydrotalcite pellets were synthesized by urea hydrolysis. Urea hydrolysis can provide both carbonate as the intercalated anion and hydroxyl anions to form Mg–Al layered double hydroxide (LDH) with carbonate intercalation. Urea hydrolysis was also used to generate NH3 which plays a critical role in the process of synthesis hydrotalcite pellets. Mechanism of the formation hydrotalcite pellets was also discussed. The as-prepared samples were well characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscope, N2 adsorption/desorption, and Fourier transform infrared spectroscopy, respectively. The results revealed that the hydrotalcite pellets were well-crystallized and formed by self-assembly of hexagonal platelets LDHs. The present work suggests that it is possible to grow hydrotalcite pellets directly through one-step aqueous solution-phase chemical route under controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choudary BM, Jaya VS, Reddy BR, Kantam ML, Rao MM, Madhavendra SS (2005) Chem Mater 17:2740–2743

    Article  CAS  Google Scholar 

  2. Kim TW, Sahimi M, Tsotsis TT (2008) Ind Eng Chem Res 47:9127–9132

    Article  CAS  Google Scholar 

  3. Winter F, Xia XY, Hereijgers BPC, Bitter JH, van Dillen AJ, Muhler M, de Jong KP (2006) J Phys Chem B 110:9211–9218

    Article  CAS  Google Scholar 

  4. Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:5662–5663

    Article  CAS  Google Scholar 

  5. Kantam ML, Laha S, Yadav J, Likhar PR, Sreedhar B, Jha S, Bhargava S, Udayakiran M, Jagadeesh B (2008) Org Lett 10:2979–2982

    Article  CAS  Google Scholar 

  6. Kun R, Balázs M, Dékány I (2005) Coll Surf A 265:155–162

    Article  CAS  Google Scholar 

  7. Meher LC, Gopinath R, Naik SN, Dalai AK (2009) Ind Eng Chem Res 48:1840–1846

    Article  CAS  Google Scholar 

  8. Xiang X, Hima HI, Wang H, Li F (2008) Chem Mater 20:1173–1182

    Article  CAS  Google Scholar 

  9. Gennequin C, Cousin R, Lamonier JF, Siffert S, Aboukais A (2008) Catal Commun 9:1639–1643

    Article  CAS  Google Scholar 

  10. Yan K, Xie XM, Li JP, Wang XL, Wang ZZ (2007) J Nat Gas Chem 16:371–376

    Article  CAS  Google Scholar 

  11. Ebitani K, Motokura K, Mori K, Mizugaki T, Kaneda K (2006) J Org Chem 71:5440–5447

    Article  CAS  Google Scholar 

  12. Debecker DP, Gaigneaux EM, Busca G (2009) Chem Eur J 15:3920–3935

    Article  CAS  Google Scholar 

  13. Ogawa M, Kaiho H (2002) Langmuir 18:4240–4242

    Article  CAS  Google Scholar 

  14. Kloprogge JT, Hickey L, Trujillano R, Holgado M, San Roman MS, Rives V, Martens WN, Frost RL (2006) Cryst Growth Des 6:1533–1536

    Article  CAS  Google Scholar 

  15. Naghash A, Etsell TH, Lu BJ (2008) Mater Chem 18:2562–2568

    Article  CAS  Google Scholar 

  16. Zeng HY, Deng X, Wang YJ, Liao KB (2009) Aiche J 55:1229–1235

    Article  CAS  Google Scholar 

  17. Turney (1995) United States Patent 5455058

  18. Wang YC, Zhang FZ, Xu SL, Wang XY, Evans DG, Duan X (2008) Ind Eng Chem Res 47:5746–5750

    Article  CAS  Google Scholar 

  19. Brei VV, Melezhyk OV, Starukh GM, Oranskaya EI, Mutovkin PA (2008) Micropor Mesopor Mat 113:411–417

    Article  CAS  Google Scholar 

  20. Xi Y, Davis RJJ (2008) Catal 254:190–197

    Article  CAS  Google Scholar 

  21. Zhao ZG, Geng FX, Bai JB, Cheng HM (2007) J Phys Chem C 111:3848–3852

    Article  CAS  Google Scholar 

  22. Hornok V, Erd_helyi A, Dékány I (2005) Coll Polym Sci 283:1050–1055

    Article  CAS  Google Scholar 

  23. Álvaro S, Enrique L (2009) Langmuir 25:3634–3639

    Article  Google Scholar 

  24. Pu M, Wang YL, Liu LY, Liu YH, He J, Evans DG (2008) J Phys Chem Solids 69:1066–1069

    Article  CAS  Google Scholar 

  25. Ogawa M, Asai S (2000) Chem Mater 12:3253–3255

    Article  CAS  Google Scholar 

  26. Costantino U, Marmottini F, Nocchetti M, Vivani R (1998) Eur J Inorg Chem 10:1439–1446

    Article  Google Scholar 

  27. Dékány I, Berger F, Imrik K, Lagaly G (1997) Coll Polym Sci 275:681–688

    Article  Google Scholar 

  28. Benito P, Herrero M, Barriga C, Labajos FM, Rives V (2008) Inorg Chem 47:5453–5463

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds of the Central University (HEUCF101010), the Key Technology R&D program of Heilongjiang Province (No.G202A423, No.TB06A05) and Science Fund for Young Scholar of Harbin City (No.2008RFQXG028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, D., Yu, X. et al. Fabrication of layered double hydroxide spheres through urea hydrolysis and mechanisms involved in the formation. Colloid Polym Sci 288, 1411–1418 (2010). https://doi.org/10.1007/s00396-010-2271-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2271-1

Keywords

Navigation