Skip to main content
Log in

Electrodeposition of gold nanoparticles from ionic liquid microemulsion

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Gold nanoparticles were electrodeposited directly for the first time from a new electrolyte system: water-in-ionic liquid (W/IL) microemulsion. The electrochemical behavior of Au(Ш) in W/IL microemulsion was investigated. The cyclic voltammetry (CV) result of Au(Ш) shows a pair of redox peak. The effect of precursor apparent concentration on the reduction peak current density is similar to that in homogeneous solution such as aqueous solution. The effect of scan rate on the reduction peak current density is different from that in homogeneous solution. Linear-sweep voltammograms result for a rotating disk electrode in the W/IL microemulsion suggests that the reduction is kinetically limited and not transport limited. And also the activation energy of the reaction was calculated to be 26.7 KJ mol−1. The gold electrodeposits were characterized by scanning electron microscopy and X-ray diffraction. It is found that the gold electrodeposits are face-centered cubic and nanosized. Furthermore, the potential mechanism for the electrode reaction was proposed. In addition, the electrochemical properties of the gold nanoparticles were researched through the electro-oxidation of glycerol. The CV and electrochemical impedance spectroscopy studies demonstrate that the gold nanoparticles electrodeposited from W/IL microemulsion have much higher electro-catalytic activities than bare gold for glycerol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baeck SH, Jaramillo T, Stucky GD, McFarland EW (2002) Nano Lett 2:831–834

    Article  CAS  Google Scholar 

  2. Wu ML, Chen DH, Huang TC (2001) Chem Mater 13:599–606

    Article  CAS  Google Scholar 

  3. Wang HL, Schaefer K, Moeller M (2008) J Phys Chem C 112:3175–3178

    Article  CAS  Google Scholar 

  4. Tatiana YM, Yasuyuki I, Carlos RC (2008) J Electroanal Chem 621:103–112

    Article  Google Scholar 

  5. Safavi A, Maleki N, Tajabadi F, Farjami E (2007) Electrochem Commun 9:1963–1968

    Article  CAS  Google Scholar 

  6. Wang JW, Wang LP, Di JW, Tu YF (2009) Talanta 77:1454–1459

    Article  CAS  Google Scholar 

  7. Zhao Y, Liu H, Kou Y, Li M, Zhu Z, Zhuang Q (2007) Electrochem Commun 9:2457–2462

    Article  CAS  Google Scholar 

  8. Herrmann M, Richter F, Schulz SE (2008) Microelectron Eng 85:2172–2174

    Article  CAS  Google Scholar 

  9. Dunstan DE, Goodall DG (2007) Int J Biol Macromol 40:362–366

    Article  CAS  Google Scholar 

  10. Fu JF, Ji M, Wang Z, Jin LN, An DN (2006) J Hazard Mater B 131:238–242

    Article  CAS  Google Scholar 

  11. Jing LQ, Sun XJ, Shang J, Cai WM, Xu ZL, Du YG, Fu HG (2003) Sol Energy Mater Sol Cells 79:133–151

    Article  CAS  Google Scholar 

  12. Abedin SZE, Moustafa EM, Hempelmann R, Natter H, Endres F (2005) Electrochem Commun 7:1111–1116

    Article  Google Scholar 

  13. Abedin SZE, Saad AY, Farag HK, Borisenko N, Liu QX, Endres F (2007) Electrochim Acta 52:2746–2754

    Article  Google Scholar 

  14. Sherif ZEA, Endres F (2009) Electrochim Acta 54:5673–5677

    Article  Google Scholar 

  15. Mo CS (2002) Langmuir 18:4047–4053

    Article  CAS  Google Scholar 

  16. Fendler JH (1987) Chem Rev 87:877–899

    Article  CAS  Google Scholar 

  17. Chen M, Wu YF, Zhou SX, Wu LM (2008) J Phys Chem B 112:6536–6541

    Article  CAS  Google Scholar 

  18. Zhang X, Zhang F, Guan RF, Chan KY (2007) Mater Res Bull 42:327–333

    Article  CAS  Google Scholar 

  19. Asim N, Radiman S, Yarmo MA (2008) Mater Lett 62:1044–1047

    Article  CAS  Google Scholar 

  20. Li N, Gao YA, Zheng LQ, Zhang J, Yu L, Li XW (2007) Langmuir 23:1091–1097

    Article  CAS  Google Scholar 

  21. Gao YA, Zhang J, Xu HY, Zhao XY, Zheng LQ, Li XW, Yu L (2006) ChemPhysChem 7:1554–1561

    Article  CAS  Google Scholar 

  22. Li N, Cao Q, Gao YA, Zhang J, Zheng LQ, Bai XT, Dong B, Li Z, Zhao MW, Yu L (2007) ChemPhysChem 8:2211–2217

    Article  CAS  Google Scholar 

  23. Gao YN, Han SB, Han BX, Li GZ, Shen D, Li ZG (2005) Langmuir 21:5681–5684

    Article  CAS  Google Scholar 

  24. Fu CP, Zhou HH, Peng WC, Chen JH, Kuang YF (2008) Electrochem Commun 10:806–809

    Article  CAS  Google Scholar 

  25. Dupont J, Consorti CS, Suarez PAZ, Souza RF (2002) Org Synth 79:236–240

    CAS  Google Scholar 

  26. O'Mullane Anthony P, Ippolito Samuel J, Sabri Ylias M, Bansal V, Bhargava SK (2009) Langmuir 25:3845–3852

    Article  Google Scholar 

  27. Zhang H, Xu JJ, Chen HY (2008) J Phys Chem C 112:13886–13892

    Article  CAS  Google Scholar 

  28. Bard Allen J, Faulkner Larry R (2001) Electrochemical methods fundamentals and applications. Wiley, New York, pp p227–237

    Google Scholar 

  29. Kiya Y, Hatozaki O, Oyama N, Abruna HD (2007) J Phys Chem C 111:13129–13136

    Article  CAS  Google Scholar 

  30. Boon EM, Barton JK (2003) Langmuir 19:9255–9259

    Article  CAS  Google Scholar 

  31. Markovic NM, Gasteiger HA, Ross PN (1996) Langmuir 11:4098–4108

    Article  Google Scholar 

  32. Clarke CJ, Browning GJ, Donne SW (2006) Electrochim Acta 51:5773–5784

    Article  CAS  Google Scholar 

  33. Miney PG, Cunnane VJ (2004) Electrochim Acta 49:1009–1018

    Article  CAS  Google Scholar 

  34. Mu SL, Chen CX, Wang JM (1997) Synth Met 88:249–254

    Article  CAS  Google Scholar 

  35. Koga K, Takeo H (1999) Eur Phys J D 9:535–538

    Article  CAS  Google Scholar 

  36. Yamachika N, Musha Y, Sasano J, Senda K, Kato M, Okinaka Y, Osaka T (2008) Electrochim Acta 53:4520–4527

    Article  CAS  Google Scholar 

  37. Tremiliosi-Filho G, Dall'Antonia LH, Jerkiewicz G (1997) J Electroanal Chem 422:149–159

    Article  CAS  Google Scholar 

  38. Venancio EC, Napporn WT, Motheo AJ (2002) Electrochim Acta 47:1495–1501

    Article  CAS  Google Scholar 

  39. Porta F, Prati LJ (2004) Catal 224:397–403

    Article  CAS  Google Scholar 

  40. Chen W, Kim J, Sun SH, Chen SW (2007) Langmuir 23:11303–11310

    Article  CAS  Google Scholar 

  41. Chen W, Kim J, Xu LP, Sun SH, Chen SW (2007) J Phys Chem C 111:13452–13459

    Article  CAS  Google Scholar 

  42. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2009) Int J Hydrogen Energy 34:859–869

    Article  CAS  Google Scholar 

  43. Lee EP, Peng ZM, Chen W, Chen SW, Yang H, Xia Y (2008) ACS Nano 2:2167–2173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20673036, J0830415) and Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ3025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C., Zhou, H., Xie, D. et al. Electrodeposition of gold nanoparticles from ionic liquid microemulsion. Colloid Polym Sci 288, 1097–1103 (2010). https://doi.org/10.1007/s00396-010-2238-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2238-2

Keywords

Navigation