Skip to main content
Log in

Probing the internal environment of PVP networks generated by irradiation with different sources

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels have been synthesised from the aqueous solutions of the same linear polymer by two different radiation sources: electron beams and UV rays. The present investigation couples conventional hydrogel characterisation techniques with the study of the partition equilibria, fluorescence behaviour and release of two different molecular probes, 1-anilino-8-naphthalene sulphonate (ANS) and Thioflavin T (ThT). The two probes have comparable molecular weight and different structural and optical properties. The ‘chemical’ networks produced upon irradiation in different experimental conditions presented quite distinctive mechanical spectra, yielded to different porous solids upon freeze-drying and showed specific rehydration ratios when ‘equilibrated’ in water. More interestingly, they offered ‘hydrophobic pockets’ to host the ANS molecules in a way that the probe is completely occluded from water, making it fluoresce. Conversely, the generated PVP networks did not show any specific affinity towards the hydrophilic ThT that was only barely untaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peppas NA, Nikos AG (1986) In: Peppas NA (ed) Hydrogels in medicine and pharmacy. CRC, Boca Raton

    Google Scholar 

  2. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    Article  CAS  Google Scholar 

  3. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  4. Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Meth Phys Res B 151:56–65

    Article  CAS  Google Scholar 

  5. Xu B (2009) Gels as functional nanomaterials for biology and medicine. Langmuir 25(15):8375–8377

    Article  CAS  Google Scholar 

  6. Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations. Network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  Google Scholar 

  7. Rosiak JM, Ulanski P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151

    Article  CAS  Google Scholar 

  8. Rathbone MJ, Hadgraft J, Roberts MS (eds) (2003) Modified-release drug delivery technology. Dekker, New York

  9. Kim B, Peppas NA (2003) Poly(ethylene)-glycol containing hydrogels for oral protein delivery applications. Biomed Microdevices 5(4):333–341

    Article  CAS  Google Scholar 

  10. Gulsen D, Chauhan A (2005) Dispersion microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm 292:95–117

    Article  CAS  Google Scholar 

  11. Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437

    Article  CAS  Google Scholar 

  12. Nakaji-Hirabayashi T, Kato K, Iwata H (2009) Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials 30:4581–4589

    Article  CAS  Google Scholar 

  13. Kato N, Sakai Y, Shibata S (2003) Wide-range control of deswelling time for thermosensitive poly(n-isopropylacrylamide) gel treated by freeze-drying. Macromolecules 36:961–963

    Article  CAS  Google Scholar 

  14. Zhang J-T, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomateralia 5(1):488–497

    Article  CAS  Google Scholar 

  15. Zhao Q, Sun J, Ling Q, Zhou Q (2009) Synthesis of macroporous thermosensitive hydrogels: a novel method of controlling pore size. Langmuir 25:3249–3254

    Article  CAS  Google Scholar 

  16. Kuru EA, Orakdogen N, Okay O (2007) Preparation of homogeneous polyacrylamide hydrogels by free-radical crosslinking copolymerization. Eur Polym J 43:2913–2921

    Article  CAS  Google Scholar 

  17. Maeda H, Rambone G, Coviello T, Yuguchi Y, Urakawa H, Alhaique F, Kajiwara K (2001) Low-degree oxidized scleroglucan and its hydrogel. Int J Biol Macromol 28:351–358

    Article  CAS  Google Scholar 

  18. Yuguchi Y, Kumagai T, Wu M, Hirotsu T, Hosokawa J (2004) Gelation of xyloglucan in water/alcohol systems. Cellulose 11:203–208

    Article  Google Scholar 

  19. Evmenenko GA, Budtova T, Buyanov A, Frenkel S (1996) Structure of polyelectrolyte hydrogels studied by SANS. Polymer 37:5499–5502

    Article  CAS  Google Scholar 

  20. Croney JC, Jamenson DM, Learmonth RP (2001) Fluorescence spectroscopy in biochemistry: teaching basic principles with visual demonstrations. Biochem Mol Biol Educ 29:60–65

    CAS  Google Scholar 

  21. Groenning MJ (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3(1):1–18

    Google Scholar 

  22. White NS, Errington RJ (2005) Fluorescence techniques for drug delivery research: theory and practice. Adv Drug Deliv Rev 57:17–42

    Article  CAS  Google Scholar 

  23. Rangarajan B, Coons LS, Scranton AB (1996) Characterization of hydrogels using luminescence spectroscopy. Biomaterials 17:649–661

    Article  CAS  Google Scholar 

  24. Huang HW, Horie K (1997) Fluorescence spectroscopy of polymer gels and solids. Trends Polym Sci 5:407–414

    CAS  Google Scholar 

  25. Geuskens G, Soukrati A (2000) Investigation of polyacrylamide hydrogels using 1-anilinonaphtalene-8-sulfonate as fluorescent probe. Eur Polym J 36:1537–1546

    Article  CAS  Google Scholar 

  26. Itagaki H, Fukiishi H, Imai T, Watase M (2005) Molecular structure of agarose chains in thermoreversible hydrogels revealed by means of fluorescent probe technique. J Polym Sci B Polym Phys 23:680–688

    Article  CAS  Google Scholar 

  27. Aburto J, Le Borgne S (2004) Selective adsorption of dibenzothiophene by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules 37:2938–2943

    Article  CAS  Google Scholar 

  28. Radu-Wu LC, Yang J, Wu K, Kopecek J (2009) Self-assembled hydrogels from poly[N-2-hydroxypropyl)methacrylamide] grafted with b-sheet peptides. Biomacromolecules 10(8):2319–2327

    Article  CAS  Google Scholar 

  29. Stroble G (1987) The physics of polymers. Springer-Verlag, Berlin, Chp 3

    Google Scholar 

  30. Elias HG (2008) Macromolecules: vol 3: Physical structures and properties in Macromolecules series. Wiley-VCH, New York, Chp 3

    Google Scholar 

  31. Truong Nguyen K, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  Google Scholar 

  32. Lopergolo L, Lugao AB, Catalani LH (2003) Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 44:6217–6222

    Article  CAS  Google Scholar 

  33. Fechine GJM, Barros JAG, Catalani LH (2004) Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer 45:4705–4709

    Article  CAS  Google Scholar 

  34. Rosiak JM, Olejniczak J (1993) Medical applications of radiation formed hydrogels. Radiat Phys Chem 42:903–906

    Article  CAS  Google Scholar 

  35. D’Errico, De Lellis M, Mangiapia G, Tedeschi A, Ortona O, Fusco S, Borzacchiello A, Ambrosio L (2008) Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9:231–240

    Article  CAS  Google Scholar 

  36. Fuochi PG (1994) Irradiation of power semiconductor devices by high energy electrons: the Italian experience. Radiat Phys Chem 44:431

    Article  CAS  Google Scholar 

  37. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  38. Schurz J (1991) Rheology of polymer solutions of the network type. Prog Polym Sci 16(1):1–53

    Article  CAS  Google Scholar 

  39. Matulis D, Lovrien RE (1998) 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J 74:422–429

    Article  CAS  Google Scholar 

  40. Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49:451–458

    Article  CAS  Google Scholar 

  41. Voropai ES, Samtsov MP, Kaplevskii KN, Maskevich AA, Stepuro VI, Povarova OI, Kuznetsova M, Turoverov KK, Fink AL, Uversky VN (2003) Spectral properties of thioflavin T and its complexes with amyloid fibrils. J Appl Phys 70:868–874

    CAS  Google Scholar 

  42. Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK (2007) Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res 6:1392–1401

    Article  CAS  Google Scholar 

  43. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111:4829–4835

    Article  CAS  Google Scholar 

  44. Groenning M, Olsen L, van de Weert M, Flink JM, Frokjaer S, Jorgensen FS (2007) Study on the binding of Thioflavin T to β-sheet-rich and non-β-sheet cavities. J Struct Biol 158:358–369

    Article  CAS  Google Scholar 

  45. Foderà V, Librizzi F, Groenning M, van de Weert M, Leone M (2008) Secondary nucleation and accessible surface in insulin amyloid fibril formation. J Phys Chem B 112:3853–3858

    Article  CAS  Google Scholar 

  46. Foderà V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M (2009) Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation. J Phys Chem B 113:10830–10837

    Article  CAS  Google Scholar 

  47. Foderà V, Groenning M, Vetri V, Librizzi F, Spagnolo S, Cornett C, Olsen L, van de Weert M, Leone M (2008) Thioflavin T hydroxylation at basic pH and its effect on amyloid fibril detection. J Phys Chem B 112:15174–15181

    Article  CAS  Google Scholar 

  48. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  CAS  Google Scholar 

  49. Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17(12):2916–2921

    Article  Google Scholar 

  50. Dispenza C, Tripodo G, LoPresti C, Spadaro G, Giammona G (2009) Synthesis, characterization and properties of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide-graft-maleic anhydride precursors and their stimuli-responsive hydrogels. React Funct Polym 69(8):565–575

    Article  CAS  Google Scholar 

  51. Macgregor RB, Weber G (1986) Estimation of the polarity of protein interior by optical spectroscopy. Nature 319(6048):70–73

    Article  CAS  Google Scholar 

  52. Cattoni DI, Kaufman SB, Flecha FLG (2009) Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins. Biochim Biophys Acta—Proteins and Proteomics 1794(11):1700–1708, and references herein

    Article  CAS  Google Scholar 

  53. Bismuto E, Irace G, Sirangelo I, Gratton E (1996) Pressure–induced perturbation of ANS–apomyoglobin complex: frequency domain fluorescence studies on native and acidic compact states. Protein Sci 5:121–126

    Article  CAS  Google Scholar 

  54. Krebs MHR, Bromley EHC, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37

    Article  CAS  Google Scholar 

  55. Nielsen Garriques L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    Article  CAS  Google Scholar 

  56. Styrer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of a non-polar binding sites. J Mol Biol 13:482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia Dispenza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricca, M., Foderà, V., Giacomazza, D. et al. Probing the internal environment of PVP networks generated by irradiation with different sources. Colloid Polym Sci 288, 969–980 (2010). https://doi.org/10.1007/s00396-010-2217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2217-7

Keywords

Navigation