Skip to main content
Log in

Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

While lecithin alone can form spherical or ellipsoidal reverse micelles in oil, we found that urea can promote the growth of lecithin reverse worm-like micelles in oil. In a mixed system of urea and lecithin, the urea binds to the phosphate group of lecithin, thus reducing the interface curvature of the molecular assembly and inducing the formation of reverse worm-like micelles. The regions in which these micelles form increased with lecithin concentration. In addition, the zero-shear viscosity (η 0) of the reverse worm-like micelles rapidly increased upon the addition of urea, reaching a maximum of 2 million times the viscosity of n-decane. We examined the change in η 0 in detail by performing dynamic viscoelasticity measurements. Values for η 0 increased with urea concentration because the disentanglement time of reverse worm-like micelles increased with micellar growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scartazzini R, Luisi PL (1988) Organogels from lecithins. J Phys Chem 92:829–833

    Article  CAS  Google Scholar 

  2. Schurtenberger P, Scartazzini R, Luisi PL (1989) Viscoelastic properties of polymerlike micelles. Rheol Acta 28:372–381

    Article  CAS  Google Scholar 

  3. Luisi PL, Scartazzini R, Haering G, Schurtenberger P (1990) Organogels from water-in-oil microemulsions. Colloid Polym Sci 268:356–374

    Article  CAS  Google Scholar 

  4. Angelico R, Palazzo G, Colafemmina G, Cirkel PA, Giustini M, Ceglie A (1998) Water diffusion and headgroup mobility in polymer-like reverse micelles: evidence of a sphere-to-rod-to-sphere transition. J Phys Chem B 102:2883–2889

    Article  CAS  Google Scholar 

  5. Angelico R, Ceglie A, Olsson U, Palazzo G (2000) Phase diagram and phase properties of the system lecithin-water-cyclohexane. Langmuir 16:2124–2132

    Article  CAS  Google Scholar 

  6. Shchipunov YA (2001) Lecithin organogel A micellar system with unique properties. Colloids Surf A 183:541–554

    Article  Google Scholar 

  7. Aliotta F, Fontanella ME, Pieruccini M, Salvato G, Trusso S, Vasi C, Lechner RE (2002) Percolative phenomena in lecithin reverse micelles: the role of water. Colloid Polym Sci 280:193–202

    Article  CAS  Google Scholar 

  8. Tung SH, Huang YE, Raghavan SR (2006) A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids. J Am Chem Soc 128:5751–5756

    Article  CAS  Google Scholar 

  9. Tung SH, Huang YE, Raghavan SR (2007) Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir 23:372–376

    Article  CAS  Google Scholar 

  10. Tung SH, Raghavan SR (2008) Strain-stiffening response in transient networks formed by reverse wormlike micelles. Langmuir 24:8405–8408

    Article  CAS  Google Scholar 

  11. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  Google Scholar 

  12. Kratky O, Glatter O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  13. Shikata T, Hirata H, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3:1081–1086

    Article  CAS  Google Scholar 

  14. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 1. Brownian motion in the equilibrium state. J Chem Soc Faraday Trans 2 74:1789–1801

    Article  CAS  Google Scholar 

  15. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2. Molecular motion under flow. J Chem Soc Faraday Trans 2 74:1802–1817

    Article  CAS  Google Scholar 

  16. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 3. The constitutive equation. J Chem Soc Faraday Trans 2 74:1818–1832

    Article  CAS  Google Scholar 

  17. Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4. Rheological properties. J Chem Soc Faraday Trans 2 75:38–54

    Article  CAS  Google Scholar 

  18. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the “High-Tech Research Center” project for private universities, a matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaname Hashizaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashizaki, K., Chiba, T., Taguchi, H. et al. Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system. Colloid Polym Sci 287, 927–932 (2009). https://doi.org/10.1007/s00396-009-2048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2048-6

Keywords

Navigation