Skip to main content
Log in

Nanocomposite polymer hydrogels

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The technological need for new and better soft materials as well as the drive for new knowledge and fundamental understanding has led to significant advances in the field of nanocomposite gels. A variety of complex gel structures with unique chemical, physical, and biological properties have been engineered or discovered at the nanoscale. The possibility to form self-assembled and supramolecular morphologies makes organic polymers and inorganic nanoparticles desirable building blocks for the design of water based gels. In this review, we highlight the most recent (2004–2008) accomplishments and trends in the field of nanocomposite polymer hydrogels with a focus on creative approaches to generating structures, properties, and function within mostly biotechnological applications. We examine the impact of published work and conclude with an outline on future directions and challenges that come with the design and engineering of new nanocomposite gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lovinger AJ (2005) Nano-, bio-, multi-, inter-,…: polymer research in an era of prefixes. J Macromol Sci, Part C 45(3):195–199

    Article  Google Scholar 

  2. Weiss RG, Terech P (2006) Molecular gels: materials with self-assembled fibrillar networks. Springer, Berlin, p 978

    Google Scholar 

  3. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  CAS  Google Scholar 

  4. Nelson A, Cosgrove T (2004) Dynamic light scattering studies of poly(ethylene oxide) adsorbed on Llaponite: layer conformation and its effect on particle stability. Langmuir 20(24):10382–10388

    Article  CAS  Google Scholar 

  5. Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on laponite. Langmuir 20(6):2298–2304

    Article  CAS  Google Scholar 

  6. Pozzo D, Walker L (2004) Reversible shear gelation of polymer–clay dispersions. Colloids Surf, A Physicochem Eng Asp 240(1–3):187–198

    Article  CAS  Google Scholar 

  7. Can V, Okay O (2005) Shake gels based on Laponite–PEO mixtures: effect of polymer molecular weight. Des Monomers Polym 8(5):453–462

    Article  CAS  Google Scholar 

  8. Baghdadi H, Sardinha H, Bhatia S (2005) Rheology and gelation kinetics in Laponite dispersions containing poly(ethylene oxide). J Polym Sci, B, Polym Phys 43(2):233–240

    Article  CAS  Google Scholar 

  9. Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38(6):2047–2049

    Article  CAS  Google Scholar 

  10. Li J, Jiang J, Li C, Lin M, Schwarz S, Rafailovich M, Sokojov J (2006) Effect of temperature on shear-induced anisotropic structure in polymer clay hydrogels. Macromol Rapid Commun 27(20):1787–1791

    Article  CAS  Google Scholar 

  11. Baghdadi HA, Jensen EC, Easwar N, Bhatia SR (2008) Evidence for re-entrant behavior in Laponite–PEO systems. Rheologica Acta 47(2):121–127

    Article  CAS  Google Scholar 

  12. Daga VK, Wagner NJ (2006) Linear viscoelastic master curves of neat and Laponite-filled poly(ethylene oxide)–water solutions. Rheologica Acta 45(6):813–824

    Article  CAS  Google Scholar 

  13. Loizou E, Butler P, Porcar L, Schmidt G (2006) Dynamic responses in nanocomposite hydrogels. Macromolecules 39(4):1614–1619

    Article  CAS  Google Scholar 

  14. Lin-Gibson S, Kim H, Schmidt G, Han CC, Hobbie EK (2004) Shear-induced structure in polymer–clay nanocomposite solutions. J Colloid Interface Sci 274(2):515–525

    Article  CAS  Google Scholar 

  15. de Bruyn JR, Pignon F, Tsabet E, Magnin A (2008) Micron-scale origin of the shear-induced structure in Laponite–poly(ethylene oxide) dispersions. Rheologica Acta 47(1):63–73

    Article  CAS  Google Scholar 

  16. Takahashi T, Yamada Y, Kataoka K, Nagasaki Y (2005) Preparation of a novel peg–clay hybrid as a DDS material: dispersion stability and sustained release profiles. J Control Release 107(3):408–416

    Article  CAS  Google Scholar 

  17. Lagaly G, Ziesmer S (2006) Sol–gel transitions of sodium montmorillonite dispersions by cationic end-capped poly(ethylene oxides) (surface modification of bentonites, iv). Colloid Polym Sci 284(9):947–956

    Article  CAS  Google Scholar 

  18. Pozzo DC, Walker LM (2007) Shear orientation of nanoparticle arrays templated in a thermoreversible block copolymer micellar crystal. Macromolecules 40(16):5801–5811

    Article  CAS  Google Scholar 

  19. Pozzo DC, Walker LM (2008) Macroscopic alignment of nanoparticle arrays in soft crystals of cubic and cylindrical polymer micelles. Eur Phys J, E Soft Matter 26(1/2):183–189

    CAS  Google Scholar 

  20. Nelson A, Cosgrove T (2005) Small-angle neutron scattering study of adsorbed Pluronic tri-block copolymers on Laponite. Langmuir 21(20):9176–9182

    Article  CAS  Google Scholar 

  21. Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126(49):15938–15939

    Article  CAS  Google Scholar 

  22. Nayak S, Lyon LA (2004) Photoinduced phase transitions in poly(n-isopropylacrylamide) microgels. Chem Mater 16(13):2623–2627

    Article  CAS  Google Scholar 

  23. Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Long X (2005) Thermoswitchable electronic properties of a gold nanoparticle/hydrogel composite. Macromol Rapid Commun 26(22):1784–1787

    Article  CAS  Google Scholar 

  24. Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7(11):3267–3275

    Article  CAS  Google Scholar 

  25. Cho EC, Kim JW, Fernandez-Nieves A, Weitz DA (2008) Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett 8(1):168–172

    Article  CAS  Google Scholar 

  26. Hou Y, Matthews AR, Smitherman AM, Bulick AS, Hahn MS, Hou H, Han A, Grunlan MA (2008) Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials 29(22):3175–3184

    Article  CAS  Google Scholar 

  27. Satarkar NS, Hilt ZJ (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomaterialia 4(1):11–16

    Article  CAS  Google Scholar 

  28. Zhu M, Liu Y, Sun B, Zhang W, Liu X, Yu H, Zhang Y, Kuckling D, Adler HJP (2006) A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun 27(13):1023–1028

    Article  CAS  Google Scholar 

  29. Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 38(8):3482–3490

    Article  CAS  Google Scholar 

  30. Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content. Macromolecules 39(5):1898–1905

    Article  CAS  Google Scholar 

  31. Haraguchi K, Li HJ (2005) Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angewandte Chemie 44(40):6500–6504

    Article  CAS  Google Scholar 

  32. Nie J, Du B, Oppermann W (2006) Dynamic fluctuations and spatial inhomogeneities in poly(n-isopropylacrylamide)/clay nanocomposite hydrogels studied by dynamic light scattering. J Phys Chem, Part B 110(23):11167–11175

    Article  CAS  Google Scholar 

  33. Nie J, Du B, Oppermann W (2005) Swelling, elasticity, and spatial inhomogeneity of poly(n-isopropylacrylamide)/clay nanocomposite hydrogels. Macromolecules 38(13):5729–5736

    Article  CAS  Google Scholar 

  34. Okay O, Oppermann W (2007) Polyacrylamide–clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40(9):3378–3387

    Article  CAS  Google Scholar 

  35. Mu J, Zheng S (2007) Poly(n-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels. J Colloid Interface Sci 307(2):377–385

    Article  CAS  Google Scholar 

  36. Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67(8):737–745

    Article  CAS  Google Scholar 

  37. Ziesmer S, Stock N (2008) Synthesis of bifunctional core–shell particles with a porous zeolite core and a responsive polymeric shell. Colloid Polym Sci 286(6):831–836

    Article  CAS  Google Scholar 

  38. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781

    Article  CAS  Google Scholar 

  39. Liu J, Hoffmann H (2004) Hydrogels in aqueous phases of polyvinylalcohol (PVA), surfactants and clay minerals. Colloid Polym Sci 283(1):24–32

    Article  CAS  Google Scholar 

  40. Paranhos CM, Soares BG, Oliveira RN, Pessan LA (2007) Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: Swelling behavior and characterization. Macromol Mater Eng 292(5):620–626

    Article  CAS  Google Scholar 

  41. Paranhos CM, Soares BG, Machado JC, Windmöller D, Pessan LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890

    Article  CAS  Google Scholar 

  42. Matos MA, White LR, Tilton RD (2006) Electroosmotically enhanced mass transfer through polyacrylamide gels. J Colloid Interface Sci 300(1):429–436

    Article  CAS  Google Scholar 

  43. Hill RJ (2007) Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites. J Colloid Interface Sci 316(2):635–644

    Article  CAS  Google Scholar 

  44. Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv Mater 16(13):1074–1079

    Article  CAS  Google Scholar 

  45. Tokarev I, Tokareva I, Minko S (2008) Gold-nanoparticle-enhanced plasmonic effects in a responsive polymer gel. Adv Mater 20(14):2730–2734

    Article  CAS  Google Scholar 

  46. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27(16):1346–1354

    Article  CAS  Google Scholar 

  47. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1):158–164

    Article  CAS  Google Scholar 

  48. Xiang Y, Chen D (2007) Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur Polym J 43(10):4178–4187

    Article  CAS  Google Scholar 

  49. Saravanan P, Padmanabha Raju M, Alam S (2007) A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys 103(2–3):278–282

    Article  CAS  Google Scholar 

  50. Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224

    Article  CAS  Google Scholar 

  51. Basit H, Pal A, Sen S, Bhattacharya S (2008) Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles. Chemistry—A European Journal 14(21):6534–6545

    Article  CAS  Google Scholar 

  52. Lu Y, Spyra P, Mei Y, Ballauff M, Pich A (2007) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromolecular Chemistry and Physics 208(3):254–261

    Article  CAS  Google Scholar 

  53. Sahiner N (2006) In situ metal particle preparation in cross-linked poly(2-acrylamido-2-methyl-1-propansulfonic acid) hydrogel networks. Colloid Polym Sci 285(3):283–292

    Article  CAS  Google Scholar 

  54. Cohen Stuart MA (2008) Supramolecular perspectives in colloid science. Colloid Polym Sci 286(8):855–864

    Article  CAS  Google Scholar 

  55. Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285(9):953–966

    Article  CAS  Google Scholar 

  56. Heim E, Harling S, Ludwig F, Menzel H, Schilling M (2008) Fluxgate magnetorelaxometry for characterization of hydrogel polymerization kinetics and physical entrapment capacity. J Phys Condens Matter 20(20):204106

    Article  Google Scholar 

  57. Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y (2008) Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of fe3o4 and PVA. J Control Release 126(3):228–236

    Article  CAS  Google Scholar 

  58. Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted nanoparticles for detecting and treating cancer. Drug Dev Res 67(1):70–93

    Article  CAS  Google Scholar 

  59. Ramanujan RV, Lao LL (2006) The mechanical behavior of smart magnet–hydrogel composites. Smart Mater Struc 15(4):952–956

    Article  Google Scholar 

  60. Mitra RN, Das PK (2008) In situ preparation of gold nanoparticles of varying shape in molecular hydrogel of peptide amphiphiles. J Phys Chem, Part C 112(22):8159–8166

    Article  CAS  Google Scholar 

  61. Cooper CL, Dubin PL, Kayitmazer AB, Turksen S (2005) Polyelectrolyte–protein complexes. Curr Opin Colloid interface Sci 10(1–2):52–78

    Article  CAS  Google Scholar 

  62. Shchipunov YA, Karpenko TY, Krekoten AV, Postnova IV (2005) Gelling of otherwise nongelable polysaccharides. J Colloid Interface Sci 287(2):373–378

    Article  CAS  Google Scholar 

  63. Wang G, Zhang L (2007) Manipulating formation and drug-release behavior of new sol–gel silica matrix by hydroxypropyl guar gum. J Phys Chem, Part B 111(36):10665–10670

    Article  CAS  Google Scholar 

  64. Ma J, Xu Y, Zhang Q, Zha L, Liang B (2007) Preparation and characterization of ph-and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly(n-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 285(4):479–484

    Article  CAS  Google Scholar 

  65. Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(n-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43(6):2221–2228

    Article  CAS  Google Scholar 

  66. Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56(3):291–307

    Article  CAS  Google Scholar 

  67. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343

    Article  CAS  Google Scholar 

  68. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  CAS  Google Scholar 

  69. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl 44:7686–7708

    Article  CAS  Google Scholar 

  70. Soddemann M, Richtering W (2004) Hydrogels filled with thermosensitive microgel particles. Prog Colloid Polym Sci 129:88–94

    CAS  Google Scholar 

  71. Musch J, Schneider S, Lindner P, Richtering W (2008) Unperturbed volume transition of thermosensitive poly-(n-isopropylacrylamide) microgel particles embedded in a hydrogel matrix. J Phys Chem, Part B 112(20):6309–6314

    Article  CAS  Google Scholar 

  72. Webb AR, Kumar VA, Ameer GA (2007) Biodegradable poly (diol citrate) nanocomposite elastomers for soft tissue engineering. J Mater Chem 17(9):900–906

    Article  CAS  Google Scholar 

  73. Zheng JP, Wang CZ, Wang XX, Wang HY, Zhuang H, Yao KD (2007) Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering. React Funct Polym 67(9):780–788

    Article  CAS  Google Scholar 

  74. Leeuwenburgh SCG, Jansen JA, Mikos AG (2007) Functionalization of oligo (poly(ethylene glycol) fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. J Biomater Sci, Polym Ed 18(12):1547–1564

    CAS  Google Scholar 

  75. Yu Y, Xu Y, Ning H, Zhang S (2008) Swelling behaviors of thermoresponsive hydrogels cross-linked with acryloyloxyethylaminopolysuccinimide. Colloid Polym Sci 286:1165–1171

    Article  CAS  Google Scholar 

  76. Lee WF, Chen YC (2004) Effect of bentonite on the physical properties and drug-release behavior of poly (AA-CO-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J Appl Polym Sci 91(5):2934–2941

    Article  CAS  Google Scholar 

  77. Lynch I, de Gregorio P, Dawson KA (2005) Simultaneous release of hydrophobic and cationic solutes from thin-film “plum-pudding” gels: A multifunctional platform for surface drug delivery. J Phys Chem, Part B 109(13):6257–6261

    Article  CAS  Google Scholar 

  78. Salvati A, Soderman O, Lynch I (2007) Plum-pudding gels as a platform for drug delivery: Understanding the effects of the different components on the diffusion behavior of solutes. J Phys Chem, Part B, 111(25):7367–7376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work by the authors that is described in this review was supported in part by an NSF-CAREER award, DMR 0711783 to GS, and by a Purdue Lynn Doctoral fellowship to PS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schexnailder, P., Schmidt, G. Nanocomposite polymer hydrogels. Colloid Polym Sci 287, 1–11 (2009). https://doi.org/10.1007/s00396-008-1949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1949-0

Keywords

Navigation