Skip to main content
Log in

Fabrication of organic–inorganic nano-complexes using ABC type triblock copolymer and polyoxotungstates

  • Short communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

New organic–inorganic nano-complexes were produced from a micelle of tri-block polymers; poly(styrene)-b-poly(2-vinylpyridine)- b-poly (ethylene oxide) (PS-PVP-PEO) and tungsten compounds such as tungstate (W 2−1 ), undecatungstophospate (PW 7−11 ) and undecatungstosilicate (SiW 8−11 ) in acidic aqueous solutions. The size and morphology of the complexes were characterized by measurements of dynamic light scattering, atomic force microscopy, and scanning electron microscopy. This complex is assembled mainly by the charge interaction between the inorganic polyanions and the positively charged PVP block in the PS-PVP-PEO molecule, which was confirmed by zeta-potential and fluorescence spectroscopic studies. In the absence of the inorganic anions, the zeta-potential of the micelle was +11 mV at pH 3 due to the positive charge of the PVP block. When the inorganic anion was mixed with the PS-PVP-PEO micelle, decrease in the zeta-potential due to charge neutralization occurred with incorporation of inorganic anions into the PS-PVP-PEO micelle. The minimum zeta-potential was 0, −33, and −35 mV for W 2−1 /PS-PVP-PEO, PW 7−11 /PS-PVP-PEO, and SiW 8−11 /PS-PVP-PEO complexes, respectively. Excess negative charge which occurred in the latter two complexes indicates that PS-PVP-PEO molecules bound PW 7−11 and SiW 8−11 by forces other than charge interaction. In addition, the incorporation of an inorganic polyanion into the micelle gave a new morphology to the micelle. In the absence of the polyanion, the PS-PVP-PEO micelles showed an extended conformation due to repulsive forces working among the positively charged PVP blocks. Addition of the polyanion caused the formation of shrunken forms of the micelles, since the charge repulsion was cancelled by the polyanion. This feature may be useful in developing a new type of functioning micelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PW 7−11 :

Undecatungstophosphate, (PW11O39)7−

SiW 8−11 :

Undecatungstosilicate, (SiW11O39)8−

W 2−1 :

Tungstate (WO 2−4 )

POT(s):

Polyoxotungstate(s)

PS-PVP-PEO:

Poly(styrene)-b-poly (2-vinylpyridine)-b-poly(ethylene oxide)

ADN:

Apparent degree of neutralization

DLS:

Dynamic light scattering

AFM:

Atomic force microscopy

SEM:

Scanning electron microscopy

EPM:

Electrophoretic mobility

Py:

Pyrene

References

  1. Fischer WR, Schwertmann U (1975) Clays Clay Miner 23:33

    Article  CAS  Google Scholar 

  2. Sapiesko RS, Matijevic E (1980) J Colloid Interface Sci 74:405

    Article  Google Scholar 

  3. Cornell RM (1985) Clays Clay Miner 33:219

    Article  CAS  Google Scholar 

  4. Tadros ME, Mayes I (1979) J Colloid Interface Sci 72:245

    Article  CAS  Google Scholar 

  5. Ishikawa T, Matijevic E (1991) Colloid Polym Sci 269:179

    Article  CAS  Google Scholar 

  6. Ishikawa T, Matijevic E (1988) J Colloid Interface Sci 123:122

    Article  CAS  Google Scholar 

  7. Kandori K, Horii I, Yasukawa A, Ishikawa T (1995) J Mater Sci 30:2145

    Article  CAS  Google Scholar 

  8. Chittofrati A, Matijevic E (1990) Colloids Surf 48:65

    Article  CAS  Google Scholar 

  9. Sakai H, Kawahara H, Shimazaki M, Abe M (1998) Langmuir 14:2208

    Article  Google Scholar 

  10. Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782

    Article  CAS  Google Scholar 

  11. Pinna N, Weiss K, Sack-Kongehl H, Vogel W, Urban J, Pileni MP (2001) Langmuir 17:7982

    Article  CAS  Google Scholar 

  12. Filankembo A, Andre P, Lisiecki I, Petit C, Gulik-Krzywicki T, Ninham BW, Pileni MP (2000) Colloids Surf A Physicochem Eng Aspects 174:221

    Article  CAS  Google Scholar 

  13. Bronstein LM, Sidorov SN, Valetsky PM (1999) Langmuir 15:6256

    Article  CAS  Google Scholar 

  14. Förster S, Antonietti M (1998) Adv Mater 10:195

    Article  Google Scholar 

  15. Wegne G, Baum P, Müller M, Norwig J, Landfester K (2001) Macromol Symp 175:349

    Article  Google Scholar 

  16. Cölfen H, Qi L (2001) Chem Eur J 7:106

    Article  Google Scholar 

  17. Cölfen H (2001) Macromol Rapid Commun 22:219

    Article  Google Scholar 

  18. Bronstein LM, Sidorov SN, Gourkova AY, Valetsky PM, Hartmann J, Breulmann M, Cölfen H, M Antonietti (1998) Inorg Chim Acta 280:348

    Article  CAS  Google Scholar 

  19. Gohy JF, Willet N, Varshney S, Zhang JX, Jérôme R (2001) Angew Chem Int Ed 40:3214

    Article  CAS  Google Scholar 

  20. Lei L, Gohy JF, Willet N, Varshney SK, Zhang JX, Jérôme R (2004) Macromolecules 37:1089

    Article  CAS  Google Scholar 

  21. Khanal A, Li Y, Takisawa N, Kawasaki N, Oishi Y, Nakashima K (2004) Langmuir 20:4809

    Article  CAS  Google Scholar 

  22. Gohy JF, Willet N, Varshney S, Zhang JX, Jérôme R (2002) e-Polymers No 35

  23. Stepanek M, Humpolickova J, Prochakza K, Hof M, Tuzar Z, Spirkova M, Wolff T (2003) Collect Czech Chem Commun 68:121

    Article  Google Scholar 

  24. Tajima Y (2005) Mini Rev Med Chem 5: in press

  25. Li D, Guo Y, Hu C, Jiang C, Wang E (2004) J Mol Catal A Chem 207:183

    Article  CAS  Google Scholar 

  26. Yang Y, Gao Y, Hun C, Wang E (2003) Appl Catal A Gen 252:305

    Article  CAS  Google Scholar 

  27. Bragdon JH, Havel RJ (1954) Science 120:113

    Article  CAS  Google Scholar 

  28. Tajima Y, Shizuka R, Oshitani S, Amagai H (1990) Thromb Res 57:697

    Article  CAS  Google Scholar 

  29. Tajima Y (1997) J Inorg Biochem 68:93

    Article  CAS  Google Scholar 

  30. Yamase T, Fukuda N, Tajima Y (1996) Biol Pharm Bull 19:459

    CAS  Google Scholar 

  31. Fukuda N, Yamase T, Tajima Y (1999) Biol Pharm Bull 22:463

    CAS  Google Scholar 

  32. Tajima Y (2001) Biol Pharm Bull 24:1079

    Article  CAS  Google Scholar 

  33. Tajima Y (1999) J Biochem Biophys Methods 38:217

    Article  CAS  Google Scholar 

  34. Shaffer CB, Dritchfield FH (1947) Anal Chem 19:32

    Article  CAS  Google Scholar 

  35. Harris MJ (ed) (1992) Introduction to biotechnical and applications of poly(ethylene glycol). In: Biotechnical and biomedical applications, chap 1. Plenum, New York, p 4

  36. Kalyanasundaram K, Thomas JK (1977) J Am Chem Soc 99:2039

    Article  CAS  Google Scholar 

  37. Dong DC, Winnk MA (1982) Photochem Photobiol 35:17

    Article  CAS  Google Scholar 

  38. Wilhelm M, Zhao C-L, Wang Y, Xu R, Winnik MA, Mura J-L, Riess G, Croucher MD (1991) Macromolecules 24:1033

    Article  CAS  Google Scholar 

  39. Lakowicz JR (1983) Plenum Press, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nakashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanal, A., Nakashima, K., Kawasaki, N. et al. Fabrication of organic–inorganic nano-complexes using ABC type triblock copolymer and polyoxotungstates. Colloid Polym Sci 283, 1226–1232 (2005). https://doi.org/10.1007/s00396-005-1302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1302-9

Keywords

Navigation