Skip to main content
Log in

Rheological properties of viscoelastic biofilm extracellular polymeric substances and comparison to the behavior of calcium alginate gels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this publication we present a detailed study of viscoelastic biofilms of Pseudomonas aeruginosa. Sample solutions were extracted from biofilm layers grown on Pseudomonas isolation agar. This aqueous solutions of extracellular polymeric substances exhibit weak elastic effects caused by entanglements and a small number of permanent junction points formed by calcium ions. The cross-linking mechanisms are confirmed by the Cox–Merz rule and dynamic frequency sweep tests, which result in an average lifetime of junction points of the order of 17 ms. The experimental data reveal 3.4×1017 elastically effective chains per liter of solution and no significant temperature effects in the regime between 2 and 24 °C. This result coincides pretty well with the concentration of dissolved polymer chains (2.9×1017 molecules/l). Upon addition of calcium ions, one observes the formation of stable supermolecular networks with permanent junction points. These cross-linking points did not show thermal fluctuations in time zones between 10 ms and several hours. The entanglement density of these gels is of the same order as observed in the non-cross-linked sol state (entrapped entanglements). In spite of the different molecular composition alginate gels show the same type of cross-linking mechanism as gels of extracellular polymeric substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Costerton JW, Irvin RT (1981) Annu Rev Microbiol 35:299–324

    CAS  PubMed  Google Scholar 

  2. Sutherland IW (2001) Water Sci Techol 43: 77–86

    CAS  Google Scholar 

  3. Wingender J, Neu TR, Flemming H-C, (1999) Microbial extracellular polymeric substances. Springer, Berlin Heidelberg New York

  4. Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming H-C (1999) Int J Biol Macromol 26:3–16

    CAS  PubMed  Google Scholar 

  5. Costerton JW, Stewart PS (2001) Spektrum Wiss 11:58–65

    Google Scholar 

  6. Körstgens V, Flemming H-C, Wingender J, Borchard W (2001) J Microbiol Methods 46:9–17

    CAS  PubMed  Google Scholar 

  7. Flemming H-C, Wingender J, Mayer C, Körstgens V, Borchard W (2000) Community structure and co-operation in biofilms. SGM symposium 59. Cambridge University Press, Cambridge, pp 87–105

  8. Charaklis WG (1979) Biofilm development and destruction. Electric Power Institute, Palo Alto

  9. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) Biotechnol Bioeng 65:83–92

    CAS  PubMed  Google Scholar 

  10. Ohashi A, Koyama T, Syutsubo K, Harada H (1999) Water SciTechnol 39:261–268

    Article  CAS  Google Scholar 

  11. Nielsen PH, Jahn A (1999) In: Wingender J, Neu T, Flemming H-C(eds) Microbial extracellular polymeric substances. Springer, Berlin Heidelberg New York, pp 49–72

  12. Wingender J et al (2001) Methods Enzymol 336:302–314

    PubMed  Google Scholar 

  13. Draget KI, Ostgaard K, Smidsrod O (1989) Appl Microbiol Biotechnol 31:79–83

    CAS  Google Scholar 

  14. Draget KI, Ostgaard K, Smidsrod O (1991) Carbohydr Polym 14:159–178

    Article  Google Scholar 

  15. Thiele H (1967) Histolyse und Histogenese. Akademische Verlagsgesellschaft, Frankfurt am Main

  16. Fischer P, Rehage H (1997) Rheol Acta 36:13–27

    Article  CAS  Google Scholar 

  17. Gehm L(1998) Rheologie—praxisorientierte Grundlagen und Glossar, Vincentz, Hanover

  18. Mezger T (2000) Das Rheologie-Handbuch. Vincentz, Hanover

  19. Rehage H, Hoffmann H (1991) Mol Phys 74:933–973

    CAS  Google Scholar 

  20. Löbl M, Thurn H, Hoffmann H (1984) Ber Bunsenges Phys Chem 88:1102

    Google Scholar 

  21. Thurn H, Löbl M, Hoffmann H (1985) J Phys Chem 89:517

    CAS  Google Scholar 

  22. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. Springer, Berlin Heidelberg New York

  23. Honerkamp J, Weese J (1993) Rheol Acta 32:65–73

    CAS  Google Scholar 

  24. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

  25. Kulicke W-M (1986) Fliessverhalten von Stoffen und Stoffgemischen. Hüthig and Wepf, Basel

  26. Rehage H (1982) Rheologische Untersuchungen an viskoelastischen Tensidlösungen. Dissertation. University of Bayreuth, Germany

  27. Filisetti-Cozzi TMCC, Carpita NC (1991) Anal Biochem 197:157–162

    CAS  PubMed  Google Scholar 

  28. Grobe S, Wingender J, Trüper HG (1995) J Appl Bacteriol 79:94–102

    CAS  PubMed  Google Scholar 

  29. Winter HH (1987) Polym Eng Sci 27,22:1698–1702

    Google Scholar 

  30. Dominguez A, Fernandez A, Gonzales N, Iglesias E, Montenegro L (1997) J Chem Educ 74:1227–1231

    CAS  Google Scholar 

  31. Geddie JL, Sutherland IW (1994) Biotechnol Appl Biochem 20:117–129

    Google Scholar 

Download references

Acknowledgements

Financial support by grants of the “Deutsche Forschungsgemeinschaft” (DFG Re 681/12-1) and the “Fonds der Chemischen Industrie” are gratefully acknowledged. The authors are particularly grateful to W. Borchard for his valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wloka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wloka, M., Rehage, H., Flemming, HC. et al. Rheological properties of viscoelastic biofilm extracellular polymeric substances and comparison to the behavior of calcium alginate gels. Colloid Polym Sci 282, 1067–1076 (2004). https://doi.org/10.1007/s00396-003-1033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-1033-8

Keywords

Navigation