Skip to main content
Log in

Molecular imaging of myocardial infarction

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI), and subsequent heart failure, remains a major healthcare problem in the western and developing world and leads to substantial morbidity and mortality. After MI, the ability of the myocardium to recover is closely associated with a complex immune response that often leads to adverse remodeling of the ventricle, and poor prognosis. Currently used clinical imaging modalities allow the assessment of anatomy, perfusion, function, and viability but do not provide insights into specific biological processes. In contrast, novel non-invasive imaging methods, using targeted imaging agents, allow imaging of the molecular processes underlying the post-MI immune cell response, and subsequent remodeling. Therefore, this may have significant diagnostic, prognostic, and therapeutic value, and may help to improve our understanding of post-infarct remodeling, in vivo. Imaging modalities such as magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography have been used in concert with radiolabelled and (super) paramagnetic probes to image each phase of the immune response. These probes, which target apoptosis, necrosis, neutrophils, monocytes, enzymes, angiogenesis, extracellular matrix, and scar formation have been assessed and validated pre-clinically. Translating this work to the bedside in a cost-effective, clinically beneficial manner remains a significant challenge. This article reviews these new imaging techniques as well as the corresponding pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbate A, Bussani R, Amin MS, Vetrovec GW, Baldi A (2006) Acute myocardial infarction and heart failure: role of apoptosis. Int J Biochem Cell Biol 38:1834–1840. doi:10.1016/j.biocel.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  2. Arrighi JA, Dilsizian V (2012) Multimodality imaging for assessment of myocardial viability: nuclear, echocardiography, MR, and CT. Curr Cardiol Rep 14:234–243. doi:10.1007/s11886-011-0242-x

    Article  PubMed  Google Scholar 

  3. Beller GA, Heede RC (2011) SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability. J Cardiovasc Transl Res 4:416–424. doi:10.1007/s12265-011-9290-2

    Article  PubMed  Google Scholar 

  4. Berr SS, Xu Y, Roy RJ, Kundu B, Williams MB, French BA (2007) Images in cardiovascular medicine. Serial multimodality assessment of myocardial infarction in mice using magnetic resonance imaging and micro-positron emission tomography provides complementary information on the progression of scar formation. Circulation 115:e428–e429. doi:10.1161/CIRCULATIONAHA.106.673749

    Article  PubMed  Google Scholar 

  5. Birdsall HH, Green DM, Trial J, Youker KA, Burns AR, MacKay CR, LaRosa GJ, Hawkins HK, Smith CW, Michael LH, Entman ML, Rossen RD (1997) Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation 95:684. doi:10.1161/01.CIR.95.3.684

    Article  CAS  PubMed  Google Scholar 

  6. Bloom DE, Cafiero ET, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S, Feigl AB, Gaziano T, Mowafi M, Pandya A, Prettner K, Rosenberg L, Seligman B, Stein AZ, Weinstein C (2011) The Global Economic Burden of Noncommunicable Diseases. PGDA Working Paper No. 87, Working Paper Series, Geneva. http://www.hsph.harvard.edu/pgda/working.htm

  7. Caravan P, Das B, Dumas S, Epstein FH, Helm PA, Jacques V, Koerner S, Kolodziej A, Shen L, Sun WC, Zhang Z (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Engl 46:8171. doi:10.1002/anie.200700700

    Article  CAS  PubMed  Google Scholar 

  8. Chen C, Li L, Chen LL, Prada JV, Chen MH, Fallon JT, Weyman AE, Waters D, Gillam L (1995) Incremental doses of dobutamine induce a biphasic response in dysfunctional left ventricular regions subtending coronary stenoses. Circulation 92:756–766. doi:10.1161/01.CIR.92.4.756

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL (2005) Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111:1800. doi:10.1161/01.cir.0000160936.91849.9f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316. doi:10.1006/excr.1996.0232

    Article  CAS  PubMed  Google Scholar 

  11. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101. doi:10.1161/hc3501.096798

    Article  CAS  PubMed  Google Scholar 

  12. Constantine G, Shan K, Flamm SD, Sivananthan MU (2004) Role of MRI in clinical cardiology. Lancet 363:2162. doi:10.1016/s0140-6736(04)16509-4

    Article  PubMed  Google Scholar 

  13. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521. doi:10.1016/S0008-6363(00)00281-9

    Article  CAS  PubMed  Google Scholar 

  14. Cornel JH, Bax JJ, Elhendy A, Maat AP, Kimman GJ, Geleijnse ML, Rambaldi R, Boersma E, Fioretti PM (1998) Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J Am Coll Cardiol 31:1002–1010. doi:10.1016/S0735-1097(98)00067-9

    Article  CAS  PubMed  Google Scholar 

  15. D’Egidio G, Nichol G, Williams KA, Guo A, Garrard L, deKemp R, Ruddy TD, DaSilva J, Humen D, Gulenchyn KY, Freeman M, Racine N, Benard F, Hendry P, Beanlands RS, Investigators P- (2009) Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging 2:1060–1068. doi:10.1016/j.jcmg.2009.02.017

    Article  PubMed  Google Scholar 

  16. de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG (2012) Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol 22:1881–1895. doi:10.1007/s00330-012-2434-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103. doi:10.1083/jcb.122.1.103

    Article  CAS  PubMed  Google Scholar 

  18. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56

    CAS  PubMed  Google Scholar 

  19. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665. doi:10.1016/s0002-9440(10)63154-9

    Article  CAS  PubMed  Google Scholar 

  20. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG (2005) CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96:881. doi:10.1161/01.RES.0000163017.13772.3a

    Article  CAS  PubMed  Google Scholar 

  21. Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, Babich JW, Udelson JE (2005) Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 112:2169–2174. doi:10.1161/CIRCULATIONAHA.104.530428

    Article  PubMed  Google Scholar 

  22. Dimastromatteo J, Riou LM, Ahmadi M, Pons G, Pellegrini E, Broisat A, Sancey L, Gavrilina T, Boturyn D, Dumy P, Fagret D, Ghezzi C (2010) In vivo molecular imaging of myocardial angiogenesis using the alpha(v)beta3 integrin-targeted tracer 99mTc-RAFT-RGD. J Nucl Cardiol 17:435–443. doi:10.1007/s12350-010-9191-9

    Article  PubMed  Google Scholar 

  23. Dobaczewski M, Akrivakis S, Nasser K, Michael LH, Entman ML, Frangogiannis NG (2004) Vascular mural cells in healing canine myocardial infarcts. J Histochem Cytochem 52:1019. doi:10.1369/jhc.3A6210.2004

    Article  CAS  PubMed  Google Scholar 

  24. Dobrucki LW, Sinusas AJ (2010) PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol 7:38–47. doi:10.1038/nrcardio.2009.201

    Article  PubMed  Google Scholar 

  25. Dreyer WJ, Michael LH, Nguyen T, Smith CW, Anderson DC, Entman ML, Rossen RD (1992) Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischemia-reperfusion injury. Circ Res 71:1518. doi:10.1161/01.RES.71.6.1518

    Article  CAS  PubMed  Google Scholar 

  26. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305. doi:10.1161/CIRCULATIONAHA.107.688101

    Article  PubMed  Google Scholar 

  27. Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F, Investigators H-M (2002) The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol 40:1199. doi:10.1016/S0735-1097(02)02136-8

    Article  CAS  PubMed  Google Scholar 

  28. Feuchtner G, Goetti R, Plass A, Wieser M, Scheffel H, Wyss C, Stolzmann P, Donati O, Schnabl J, Falk V, Alkadhi H, Leschka S, Cury RC (2011) Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging 4:540–549. doi:10.1161/CIRCIMAGING.110.961250

    Article  PubMed  Google Scholar 

  29. Feuchtner GM, Plank F, Pena C, Battle J, Min J, Leipsic J, Labounty T, Janowitz W, Katzen B, Ziffer J, Cury RC (2012) Evaluation of myocardial CT perfusion in patients presenting with acute chest pain to the emergency department: comparison with SPECT-myocardial perfusion imaging. Heart 98:1510–1517. doi:10.1136/heartjnl-2012-302531

    Article  PubMed  Google Scholar 

  30. Flachskampf FA, Schmid M, Rost C, Achenbach S, DeMaria AN, Daniel WG (2011) Cardiac imaging after myocardial infarction. Eur Heart J 32:272–283. doi:10.1093/eurheartj/ehq446

    Article  PubMed  Google Scholar 

  31. Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148. doi:10.1161/CIRCULATIONAHA.107.737890

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, Daly C, De Backer G, Hjemdahl P, Lopez-Sendon J, Marco J, Morais J, Pepper J, Sechtem U, Simoons M, Thygesen K, Priori SG, Blanc JJ, Budaj A, Camm J, Dean V, Deckers J, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo J, Zamorano JL, Task Force on the Management of Stable Angina Pectoris of the European Society of C, Guidelines ESCCfP (2006) Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381. doi:10.1093/eurheartj/ehl001

    Article  PubMed  Google Scholar 

  33. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88. doi:10.1016/j.phrs.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frangogiannis NG (2006) The mechanistic basis of infarct healing. Antioxid Redox Signal 8:1907. doi:10.1089/ars.2006.8.1907

    Article  CAS  PubMed  Google Scholar 

  35. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51:1581. doi:10.1016/j.jacc.2008.01.019

    Article  PubMed  Google Scholar 

  36. Gabbiani G (1996) The cellular derivation and the life span of the myofibroblast. Pathol Res Pract 192:708. doi:10.1016/s0344-0338(96)80092-6

    Article  CAS  PubMed  Google Scholar 

  37. Gaibazzi N, Rigo F, Reverberi C (2010) Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: a multiparametric contrast stress-echocardiography study. J Am Soc Echocardiogr 23:1242–1250. doi:10.1016/j.echo.2010.09.003

    Article  PubMed  Google Scholar 

  38. Ganame J, Messalli G, Dymarkowski S, Rademakers FE, Desmet W, Van de Werf F, Bogaert J (2009) Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 30:1440. doi:10.1093/eurheartj/ehp093

    Article  PubMed  Google Scholar 

  39. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG (2010) Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J 31:2984–2995. doi:10.1093/eurheartj/ehq361

    Article  PubMed  Google Scholar 

  40. Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, Ferguson TB Jr, Fihn SD, Fraker TD Jr, Gardin JM, O’Rourke RA, Pasternak RC, Williams SV, American College of C, American Heart Association Task Force on practice g (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients with Chronic Stable Angina). J Am Coll Cardiol 41:159–168. doi:10.1161/01.CIR.0000047041.66447.29

    Article  PubMed  Google Scholar 

  41. Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, Rollins S, Todaro TG, Nicolau JC, Ruzyllo W, Armstrong PW, Investigators C (2003) Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 108:1184. doi:10.1161/01.cir.0000087447.12918.85

    Article  CAS  PubMed  Google Scholar 

  42. Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, Hayes SW, Cohen I, Germano G, Berman DS (2011) Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 32:1012–1024. doi:10.1093/eurheartj/ehq500

    Article  PubMed  Google Scholar 

  43. Haslett C (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160:S5. doi:10.1164/ajrccm.160.supplement_1.4

    Article  CAS  PubMed  Google Scholar 

  44. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG (2007) Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J 154:415–423. doi:10.1016/j.ahj.2007.04.061

    Article  PubMed  Google Scholar 

  45. Helm PA, Caravan P, French BA, Jacques V, Shen L, Xu Y, Beyers RJ, Roy RJ, Kramer CM, Epstein FH (2008) Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology 247:788. doi:10.1148/radiol.2473070975

    Article  PubMed  Google Scholar 

  46. Higgins CB, Herfkens R, Lipton MJ, Sievers R, Sheldon P, Kaufman L, Crooks LE (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52:184. doi:10.1016/0002-9149(83)90093-0

    Article  CAS  PubMed  Google Scholar 

  47. Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H, Hegenloh R, Reder S, Nekolla SG, Wester HJ, Schwaiger M (2008) Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 78:395. doi:10.1093/cvr/cvn033

    Article  CAS  PubMed  Google Scholar 

  48. Higuchi T, Wester HJ, Schwaiger M (2007) Imaging of angiogenesis in cardiology. Eur J Nucl Med Mol Imaging 34(Suppl 1):S9–S19. doi:10.1007/s00259-007-0436-z

    Article  CAS  PubMed  Google Scholar 

  49. Hillenbrand HB, Kim RJ, Parker MA, Fieno DS, Judd RM (2000) Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation 102:1678–1683. doi:10.1161/01.CIR.102.14.1678

    Article  CAS  PubMed  Google Scholar 

  50. Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde WL, Doevendans PA, De Muinck E, Wellens HJ, Kemerink GJ, Reutelingsperger CP, Heidendal GA (2000) Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356:209. doi:10.1016/S0140-6736(00)02482-X

    Article  CAS  PubMed  Google Scholar 

  51. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, Nelemans PJ, Schalla S (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59:1719–1728. doi:10.1016/j.jacc.2011.12.040

    Article  PubMed  Google Scholar 

  52. Jaarsma C, Nagel E, Schalla S (2013) A critical review of different imaging methods for the assessment of myocardial ischemia. Curr Cardiovasc Imaging Rep 6:117–127. doi:10.1007/s12410-012-9185-x

    Article  Google Scholar 

  53. Jaeschke H, Smith CW (1997) Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 61:647

    CAS  PubMed  Google Scholar 

  54. Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA (1990) Development of cell injury in sustained acute ischemia. Circulation 82:II2

    CAS  PubMed  Google Scholar 

  55. Johnston SS, Curkendall S, Makenbaeva D, Mozaffari E, Goetzel R, Burton W, Maclean R (2011) The direct and indirect cost burden of acute coronary syndrome. J Occup Environ Med 53:2. doi:10.1097/JOM.0b013e31820290f4

    Article  PubMed  Google Scholar 

  56. Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH (2013) Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 112:891–899. doi:10.1161/CIRCRESAHA.111.300484

    Article  CAS  PubMed  Google Scholar 

  57. Kang X, Shaw LJ, Hayes SW, Hachamovitch R, Abidov A, Cohen I, Friedman JD, Thomson LE, Polk D, Germano G, Berman DS (2006) Impact of body mass index on cardiac mortality in patients with known or suspected coronary artery disease undergoing myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 47:1418–1426. doi:10.1016/j.jacc.2005.11.062

    Article  PubMed  Google Scholar 

  58. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453. doi:10.1056/NEJM200011163432003

    Article  CAS  PubMed  Google Scholar 

  59. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, O’Gara PT, Carabello BA, Russell RO Jr, Cerqueira MD, St John Sutton MG, DeMaria AN, Udelson JE, Kennedy JW, Verani MS, Williams KA, Antman EM, Smith SC Jr, Alpert JS, Gregoratos G, Anderson JL, Hiratzka LF, Faxon DP, Hunt SA, Fuster V, Jacobs AK, Gibbons RJ, Russell RO, American College of C, American Heart A, American Society for Nuclear C (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 42:1318–1333. doi:10.1161/01.CIR.0000080946.42225.4D

    Article  PubMed  Google Scholar 

  60. Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE, Niessen HW (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55:801. doi:10.1136/jcp.55.11.801

    Article  CAS  PubMed  Google Scholar 

  61. Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, Davis RB (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113:2733. doi:10.1161/circulationaha.105.570648

    Article  PubMed  Google Scholar 

  62. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626. doi:10.1056/nejm200003023420904

    Article  CAS  PubMed  Google Scholar 

  63. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, Dutta P, Iwamoto Y, Ueno T, Begieneman MP, Niessen HW, Piek JJ, Vinegoni C, Pittet MJ, Swirski FK, Tawakol A, Di Carli M, Weissleder R, Nahrendorf M (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153. doi:10.1016/j.jacc.2011.08.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46:257. doi:10.1016/S0008-6363(00)00030-4

    Article  CAS  PubMed  Google Scholar 

  65. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, Mitamura H, Ogawa S (2002) Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. J Am Coll Cardiol 39:241. doi:10.1016/S0735-1097(01)01721-1

    Article  PubMed  Google Scholar 

  66. Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, Gorbatov R, Iwamoto Y, Dutta P, Wojtkiewicz G, Courties G, Sebas M, Borodovsky A, Fitzgerald K, Nolte MW, Dickneite G, Chen JW, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M (2013) Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127:2038–2046. doi:10.1161/CIRCULATIONAHA.112.000116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makowski MR, Ebersberger U, Nekolla S, Schwaiger M (2008) In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. Eur Heart J 29:2201. doi:10.1093/eurheartj/ehn129

    Article  PubMed  Google Scholar 

  68. Marin-Neto JA, Dilsizian V, Arrighi JA, Perrone-Filardi P, Bacharach SL, Bonow RO (1998) Thallium scintigraphy compared with 18F-fluorodeoxyglucose positron emission tomography for assessing myocardial viability in patients with moderate versus severe left ventricular dysfunction. Am J Cardiol 82:1001–1007. doi:S0002-9149(98)00551-7

    Article  CAS  PubMed  Google Scholar 

  69. McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, Greaves DR, Neubauer S, Channon KM, Choudhury RP (2008) Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 28:77. doi:10.1161/atvbaha.107.145466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McRobbie DW, Moore EA, Graves MJ, Prince MR (2003) MRI from picture to proton. Cambridge University Press, Cambridge

    Google Scholar 

  71. Mendoza DD, Joshi SB, Weissman G, Taylor AJ, Weigold WG (2010) Viability imaging by cardiac computed tomography. J Cardiovasc Comput Tomogr 4:83–91. doi:10.1016/j.jcct.2010.01.019

    Article  PubMed  Google Scholar 

  72. Metz LD, Beattie M, Hom R, Redberg RF, Grady D, Fleischmann KE (2007) The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol 49:227–237. doi:10.1016/j.jacc.2006.08.048

    Article  PubMed  Google Scholar 

  73. Montet-Abou K, Daire JL, Hyacinthe JN, Jorge-Costa M, Grosdemange K, Mach F, Petri-Fink A, Hofmann H, Morel DR, Vallee JP, Montet X (2010) In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J 31:1410–1420. doi:10.1093/eurheartj/ehp547

    Article  CAS  PubMed  Google Scholar 

  74. Muzard J, Sarda-Mantel L, Loyau S, Meulemans A, Louedec L, Bantsimba-Malanda C, Hervatin F, Marchal-Somme J, Michel JB, Le Guludec D, Billiald P, Jandrot-Perrus M (2009) Non-invasive molecular imaging of fibrosis using a collagen-targeted peptidomimetic of the platelet collagen receptor glycoprotein VI. PLoS ONE 4:e5585. doi:10.1371/journal.pone.0005585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Nahrendorf M, Aikawa E, Figueiredo JL, Stangenberg L, van den Borne SW, Blankesteijn WM, Sosnovik DE, Jaffer FA, Tung CH, Weissleder R (2008) Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. Eur Heart J 29:445. doi:10.1093/eurheartj/ehm558

    Article  CAS  PubMed  Google Scholar 

  76. Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, Aikawa E, Kelly K, Libby P, Weissleder R (2009) 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2:1213. doi:10.1016/j.jcmg.2009.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160. doi:10.1161/CIRCULATIONAHA.107.756510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nahrendorf M, Swirski FK (2013) Monocyte and macrophage heterogeneity in the heart. Circ Res 112:1624–1633. doi:10.1161/CIRCRESAHA.113.300890

    Article  CAS  PubMed  Google Scholar 

  79. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037. doi:10.1084/jem.20070885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Naresh NK, Ben-Mordechai T, Leor J, Epstein FH (2011) Molecular imaging of healing after myocardial infarction. Curr Cardiovasc Imaging Rep 4:63. doi:10.1007/s12410-010-9058-0

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nathan C (2002) Points of control in inflammation. Nature 420:846. doi:10.1038/nature01320

    Article  CAS  PubMed  Google Scholar 

  82. Nesto RW, Kowalchuk GJ (1987) The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 59:23C–30C

    Article  CAS  PubMed  Google Scholar 

  83. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55:1629. doi:10.1016/j.jacc.2009.08.089

    Article  PubMed  PubMed Central  Google Scholar 

  84. Phinikaridou A, Andia ME, Shah AM, Botnar R (2012) Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in-vivo cardiovascular biology. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00583.2012

    PubMed  Google Scholar 

  85. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633

    CAS  PubMed  Google Scholar 

  86. Ren G, Michael LH, Entman ML, Frangogiannis NG (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 50:71. doi:10.1177/002215540205000108

    Article  CAS  PubMed  Google Scholar 

  87. Rodriguez-Granillo GA, Rosales MA, Baum S, Rennes P, Rodriguez-Pagani C, Curotto V, Fernandez-Pereira C, Llaurado C, Risau G, Degrossi E, Doval HC, Rodriguez AE (2009) Early assessment of myocardial viability by the use of delayed enhancement computed tomography after primary percutaneous coronary intervention. JACC Cardiovasc Imaging 2:1072–1081. doi:10.1016/j.jcmg.2009.03.023

    Article  PubMed  Google Scholar 

  88. Rodriguez-Porcel M, Cai W, Gheysens O, Willmann JK, Chen K, Wang H, Chen IY, He L, Wu JC, Li ZB, Mohamedali KA, Kim S, Rosenblum MG, Chen X, Gambhir SS (2008) Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 49:667–673. doi:10.2967/jnumed.107.040576

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sarda-Mantel L, Hervatin F, Michel JB, Louedec L, Martet G, Rouzet F, Lebtahi R, Merlet P, Khaw BA, Le Guludec D (2008) Myocardial uptake of 99mTc-annexin-V and 111In-antimyosin-antibodies after ischemia-reperfusion in rats. Eur J Nucl Med Mol Imaging 35:158–165. doi:10.1007/s00259-007-0559-2

    Article  CAS  PubMed  Google Scholar 

  90. Skinner JS, Smeeth L, Kendall JM, Adams PC, Timmis A, Chest Pain Guideline Development G (2010) NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart 96:974–978. doi:10.1136/hrt.2009.190066

    Article  PubMed  Google Scholar 

  91. Slart RH, Bax JJ, van Veldhuisen DJ, van der Wall EE, Irwan R, Sluiter WJ, Dierckx RA, de Boer J, Jager PL (2006) Prediction of functional recovery after revascularization in patients with chronic ischaemic left ventricular dysfunction: head-to-head comparison between 99mTc-sestamibi/18F-FDG DISA SPECT and 13N-ammonia/18F-FDG PET. Eur J Nucl Med Mol Imaging 33:716–723. doi:10.1007/s00259-005-0016-z

    Article  PubMed  Google Scholar 

  92. Sosnovik DE, Garanger E, Aikawa E, Nahrendorf M, Figuiredo JL, Dai G, Reynolds F, Rosenzweig A, Weissleder R, Josephson L (2009) Molecular MRI of cardiomyocyte apoptosis with simultaneous delayed-enhancement MRI distinguishes apoptotic and necrotic myocytes in vivo: potential for midmyocardial salvage in acute ischemia. Circ Cardiovasc Imaging 2:460. doi:10.1161/circimaging.109.859678

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sosnovik DE, Nahrendorf M, Deliolanis N, Novikov M, Aikawa E, Josephson L, Rosenzweig A, Weissleder R, Ntziachristos V (2007) Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115:1384–1391. doi:10.1161/CIRCULATIONAHA.106.663351

    Article  PubMed  Google Scholar 

  94. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F, Grazette L, Rosenzweig A, Weissleder R, Josephson L (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Resonan Med 54:718–724. doi:10.1002/mrm.20617

    Article  Google Scholar 

  95. Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V (1998) [18F]fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation 97:843–850. doi:10.1161/01.CIR.97.9.843

    Article  CAS  PubMed  Google Scholar 

  96. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, Dione DP, Cavaliere P, Chow C, Bourke BN, Hu XY, Azure M, Yalamanchili P, Liu R, Cheesman EH, Robinson S, Edwards DS, Sinusas AJ (2005) Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112:3157. doi:10.1161/circulationaha.105.583021

    Article  CAS  PubMed  Google Scholar 

  97. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166. doi:10.1126/science.1230719

    Article  CAS  PubMed  Google Scholar 

  98. Takahashi T, Hiasa Y, Ohara Y, Miyazaki S, Ogura R, Suzuki N, Hosokawa S, Kishi K, Ohtani R (2008) Relationship of admission neutrophil count to microvascular injury, left ventricular dilation, and long-term outcome in patients treated with primary angioplasty for acute myocardial infarction. Circ J 72:867. doi:10.1253/circj.72.867

    Article  PubMed  Google Scholar 

  99. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888. doi:10.1056/NEJM198604033141405

    Article  CAS  PubMed  Google Scholar 

  100. Turpie AG (2006) Burden of disease: medical and economic impact of acute coronary syndromes. Am J Manag Care 12:S430

    PubMed  Google Scholar 

  101. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE (2012) Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 5:596. doi:10.1016/j.jcmg.2012.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  102. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, Kelion AD, Al-Mohammad A, Prvulovich EM, Shaw LJ, Tweddel AC, British Cardiac S, British Nuclear Cardiology S, British Nuclear Medicine S, Royal College of Physicians of L, Royal College of R (2004) Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 31:261–291. doi:10.1007/s00259-003-1344-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van der Laan AM, Hirsch A, Robbers LF, Nijveldt R, Lommerse I, Delewi R, van der Vleuten PA, Biemond BJ, Zwaginga JJ, van der Giessen WJ, Zijlstra F, van Rossum AC, Voermans C, van der Schoot CE, Piek JJ (2012) A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: monocytes and myocardial infarction. Am Heart J 163:57. doi:10.1016/j.ahj.2011.09.002

    Article  PubMed  CAS  Google Scholar 

  104. van der Laan AM, Nahrendorf M, Piek JJ (2012) Healing and adverse remodelling after acute myocardial infarction: role of the cellular immune response. Heart 98:1384. doi:10.1136/heartjnl-2012-301623

    Article  PubMed  CAS  Google Scholar 

  105. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714. doi:10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  106. Vasilyev N, Williams T, Brennan M-L, Unzek S, Zhou X, Heinecke JW, Spitz DR, Topol EJ, Hazen SL, Penn MS (2005) Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 112:2812. doi:10.1161/circulationaha.105.542340

    Article  CAS  PubMed  Google Scholar 

  107. vom Dahl J, Eitzman DT, al-Aouar ZR, Kanter HL, Hicks RJ, Deeb GM, Kirsh MM, Schwaiger M (1994) Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 90:2356–2366. doi:10.1161/01.CIR.90.5.2356

    Article  Google Scholar 

  108. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44. doi:10.1161/01.CIR.76.1.44

    Article  CAS  PubMed  Google Scholar 

  109. WHO (2013) The top 10 causes of death. World Health Organization, Geneva

    Google Scholar 

  110. Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868

    CAS  PubMed  Google Scholar 

  111. Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA (2002) Myocardial infarction and cardiac remodelling in mice. Exp Physiol 87:547. doi:10.1113/eph8702385

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René M. Botnar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jivraj, N., Phinikaridou, A., Shah, A.M. et al. Molecular imaging of myocardial infarction. Basic Res Cardiol 109, 397 (2014). https://doi.org/10.1007/s00395-013-0397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0397-2

Keywords

Navigation