Skip to main content
Log in

Diazoxide postconditioning induces mitochondrial protein S-Nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Postconditioning (PostC) can be obtained either with brief cycles of ischemia/reperfusion (I-PostC) or with a direct targeting of mitochondria with Diazoxide (pharmacological PostC, P-PostC). I-PostC may induce the activation of RISK and SAFE pathways and may favor nitric oxide production with S-Nitrosylation of proteins and redox signaling. It is not clear whether Diazoxide can lead to similar effects. We compared the effects of I-PostC and P-PostC on (a) kinases of RISK- and SAFE pathway, (b) S-Nitrosylation of mitochondrial proteins and (c) reduction of death signals (PKCδ, cleaved caspase-3 and Beclin-1) in cytosolic and mitochondrial fractions. Isolated rat hearts underwent (1) perfusion without ischemia (Sham), (2) ischemia/reperfusion (30-min ischemia plus 2-h reperfusion), (3) I-PostC (5 intermittent cycles of 10-s reperfusion and 10-s ischemia immediately after the 30-min ischemia), (4) P-PostC (Diazoxide 30 μM in the first of 3-min of reperfusion) or (5) I-PostC + MPG or P-PostC + MPG (MPG, 2-mercaptopropionylglycine 300 μM). Using Western blot and biotin switch assay, we found that P-PostC induced a redox sensible phosphorylation/translocation of Akt, ERK1/2 and GSK3β into the mitochondria, but not of phospho-STAT3, which was translocated into the mitochondria by I-PostC only. Either I-PostC or P-PostC increased mitochondrial S-Nitrosylated proteins (e.g., VDAC) and reduced the levels of phospho-PKCδ, cleaved caspase-3 and Beclin-1. Therefore, direct targeting of mitochondria with Diazoxide (a) activates the RISK pathway via a redox signaling, (b) favors discrete mitochondrial protein S-Nitrosylation, including VDAC and (c) decreases signals of death. Intriguingly, phospho-STAT3 translocation is induced by I-PostC, but not by P-PostC, thus suggesting a redox-independent mechanism in the SAFE pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmad N, Wang Y, Haider KH, Wang B, Pasha Z, Uzun O, Ashraf M (2006) Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol 290:H2402–H2408. doi:10.1152/ajpheart.00737.2005

    Article  PubMed  CAS  Google Scholar 

  2. Angelone T, Quintieri AM, Pasqua T, Gentile S, Tota B, Mahata SK, Cerra MC (2012) Phosphodiesterase type-2 and NO-dependent S-nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. Am J Physiol Heart Circ Physiol 302:H431–H442. doi:10.1152/ajpheart.00491.2011

    Article  PubMed  CAS  Google Scholar 

  3. Argaud L, Gateau-Roesch O, Augeul L, Couture-Lepetit E, Loufouat J, Gomez L, Robert D, Ovize M (2008) Increased mitochondrial calcium coexists with decreased reperfusion injury in postconditioned (but not preconditioned) hearts. Am J Physiol Heart Circ Physiol 294:H386–H391. doi:10.1152/ajpheart.01035.2007

    Article  PubMed  CAS  Google Scholar 

  4. Arrell DK, Elliott ST, Kane LA, Guo Y, Ko YH, Pedersen PL, Robinson J, Murata M, Murphy AM, Marbán E, Van Eyk JE (2006) Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res 99:706–714. doi:10.1161/01.RES.0000243995.74395.f8

    Article  PubMed  CAS  Google Scholar 

  5. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435. doi:10.1046/j.1471-4159.2003.02113.x

    Article  PubMed  CAS  Google Scholar 

  6. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135. doi:10.1161/CIRCRESAHA.107.164699

    Article  PubMed  CAS  Google Scholar 

  7. Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880. doi:10.1089/ars.2010.3309

    Article  PubMed  CAS  Google Scholar 

  8. Boengler K, Heusch G, Schulz R (2011) Nuclear-encoded mitochondrial proteins and their role in cardioprotection. Biochim Biophys Acta 1813:194–1286. doi:10.1016/j.bbamcr.2011.01.009

    Article  Google Scholar 

  9. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed  CAS  Google Scholar 

  10. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292:H1764–H1769. doi:10.1152/ajpheart.01071.2006

    Article  PubMed  CAS  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein—dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  12. Budas GR, Churchill EN, Disatnik MH, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res 88:83–92. doi:10.1093/cvr/cvq180

    Article  PubMed  CAS  Google Scholar 

  13. Carré M, André N, Carles G, Borghi H, Brichese L, Briand C, Braguer D (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 277:33664–33669. doi:10.1074/jbc.M203834200

    Article  PubMed  Google Scholar 

  14. Carroll R, Gant VA, Yellon DM (2001) Mitochondrial KATP channels protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700. doi:10.1016/S0008-6363(01)00330-3

    Article  PubMed  CAS  Google Scholar 

  15. Churchill EN, Mochly-Rosen D (2007) The roles of PKCdelta and epsilon isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans 35:1040–1042. doi:10.1042/BST0351040

    Article  PubMed  CAS  Google Scholar 

  16. Churchill EN, Szweda LI (2005) Translocation of deltaPKC to mitochondria during cardiac reperfusion enhances superoxide anion production and induces loss in mitochondrial function. Arch Biochem Biophys 439:194–199. doi:10.1016/j.abb.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  17. Cohen MV, Downey JM (2011) Ischemic postconditioning: from receptor to end-effector. Antioxid Redox Signal 14:821–831. doi:10.1089/ars.2010.3318

    Article  PubMed  CAS  Google Scholar 

  18. Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903. doi:10.1161/CIRCULATIONAHA.106.675710

    Article  PubMed  Google Scholar 

  19. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336. doi:10.1161/01.RES.0000178451.08719.5b

    Article  PubMed  CAS  Google Scholar 

  20. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970. doi:10.1161/01.RES.0000148632.35500.d9

    Article  PubMed  CAS  Google Scholar 

  21. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219. doi:10.1016/S0092-8674(04)00046-7

    Article  PubMed  CAS  Google Scholar 

  22. Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K (2005) Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am J Physiol Heart Circ Physiol 289:H1618–H1626. doi:10.1152/ajpheart

    Article  PubMed  CAS  Google Scholar 

  23. Dayoub H, Achan V, Adimoolam S, Jacobi J, Stuehlinger MC, Wang BY, Tsao PS, Kimoto M, Vallance P, Patterson AJ, Cooke JP (2003) Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation 108:3042–3047. doi:10.1161/01.CIR.0000101924.04515.2E

    Article  PubMed  CAS  Google Scholar 

  24. Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabò R, Menazza S, Semenzato M (2011) Mitochondrial injury and protection in ischemic pre- and postconditioning. Antioxid Redox Signal 14:881–891. doi:10.1089/ars.2010.3375

    Article  PubMed  Google Scholar 

  25. Downey JM, Cohen MV (2006) A really radical observation—a comment on Penna et al. in Basic Res Cardiol (2006) 101:180–189. Basic Res Cardiol 101:190–191. doi:10.1007/s00395-006-0586-3

    Article  PubMed  Google Scholar 

  26. Filice E, Angelone T, De Francesco EM, Pellegrino D, Maggiolini M, Cerra MC (2011) Crucial role of phospholamban phosphorylation and S-nitrosylation in the negative lusitropism induced by 17β-estradiol in the male rat heart. Cell Physiol Biochem 28:41–52. doi:10.1159/000331712

    Article  PubMed  CAS  Google Scholar 

  27. Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809. doi:10.1161/hh0801.089342

    Article  PubMed  CAS  Google Scholar 

  28. Fryer RM, Pratt PF, Hsu AK, Gross GJ (2001) Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649

    PubMed  CAS  Google Scholar 

  29. Gucek M, Murphy E (2010) What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 88:211–218. doi:10.1093/cvr/cvq277

    Article  PubMed  CAS  Google Scholar 

  30. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660. doi:10.1074/jbc.M404500200

    Article  PubMed  CAS  Google Scholar 

  31. Harada N, Miura T, Dairaku Y, Kametani R, Shibuya M, Wang R, Kawamura S, Matsuzaki M (2004) NO donor-activated PKC-delta plays a pivotal role in ischemic myocardial protection through accelerated opening of mitochondrial K-ATP channels. J Cardiovasc Pharmacol 44:35–41. doi:10.1097/00005344-200407000-00005

    Article  PubMed  CAS  Google Scholar 

  32. Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning induced protection. Circulation 109:1714–1717. doi:10.1161/01.CIR.0000126294.81407.7D

    Article  PubMed  CAS  Google Scholar 

  33. Hausenloy DJ, Baxter G, Bell R, Bøtker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  34. Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. doi:10.1089/ars.2010.3360

    Article  PubMed  CAS  Google Scholar 

  35. Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202. doi:10.1007/s00395-009-0010-x

    Article  PubMed  CAS  Google Scholar 

  36. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. doi:10.1016/j.cardiores.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  37. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  PubMed  CAS  Google Scholar 

  38. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  39. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi:10.1161/CIRCRESAHA.111.255604

    Article  PubMed  CAS  Google Scholar 

  40. Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M (2012) STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 110:111–115. doi:10.1161/CIRCRESAHA.111.259556

    Article  PubMed  CAS  Google Scholar 

  41. Heusch G (2004) Postconditioning: old wine in a new bottle? J Am Coll Cardiol 44:1111–1112. doi:10.1016/j.jacc.2004.06.013

    Article  PubMed  Google Scholar 

  42. Heusch G (2012) Reduction of infarct size by ischaemic post-conditioning in humans: fact or fiction? Eur Heart J 33:13–15. doi:10.1007/s00059-008-3101-9

    Article  PubMed  Google Scholar 

  43. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195. doi:10.1161/01.RES.0000134921.50377.61

    Article  PubMed  CAS  Google Scholar 

  44. Hofstaetter B, Taimor G, Inserte J, Garcia-Dorado D, Piper HM (2002) Inhibition of apoptotic responses after ischemic stress in isolated hearts and cardiomyocytes. Basic Res Cardiol 97:479–488. doi:10.1007/s003950200053

    Article  PubMed  CAS  Google Scholar 

  45. Ikeno F, Inagaki K, Rezaee M, Mochly-Rosen D (2007) Impaired perfusion after myocardial infarction is due to reperfusion-induced deltaPKC-mediated myocardial damage. Cardiovasc Res 73:699–709. doi:10.1016/j.cardiores.2006.12.011

    Article  PubMed  CAS  Google Scholar 

  46. Ivanes F, Rioufol G, Piot C, Ovize M (2011) Postconditioning in acute myocardial infarction patients. Antioxid Redox Signal 14:811–820. doi:10.1089/ars.2010.3354

    Article  PubMed  CAS  Google Scholar 

  47. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 86:PL1. doi:10.1126/stke.2001.86.pl1

    Google Scholar 

  48. Kimura T, Horibe T, Sakamoto C, Shitara Y, Fujiwara F, Komiya T, Yamamoto A, Hayano T, Takahashi N, Kikuchi M (2008) Evidence for mitochondrial localization of P5, a member of the protein disulphide isomerase family. J Biochem 144:187–196. doi:10.1093/jb/mvn057

    Article  PubMed  CAS  Google Scholar 

  49. Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208. doi:10.1093/cvr/cvp274

    Article  PubMed  CAS  Google Scholar 

  50. Lai HC, Liu TJ, Ting CT, Sharma PM, Wang PH (2003) Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of PI3kinase/Akt pathway. Mol Cell Endocrinol 205:99–106. doi:10.1016/S0303-7207(03)00200-4

    Article  PubMed  CAS  Google Scholar 

  51. Li H, Xiao YB, Gao YQ, Yang TD (2006) Comparative proteomics analysis of differentially expressed phosphoproteins in adult rat ventricular myocytes subjected to diazoxide preconditioning. Drug Metabol Drug Interact 21:245–258

    Article  PubMed  Google Scholar 

  52. Liu H, McPherson BC, Yao Z (2001) Preconditioning attenuates apoptosis and necrosis: role of protein kinase C epsilon and -delta isoforms. Am J Physiol Heart Circ Physiol 281:H404–H410

    PubMed  CAS  Google Scholar 

  53. Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D’Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M (2009) The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16:1480–1492. doi:10.1038/cdd.2009.100

    Article  PubMed  CAS  Google Scholar 

  54. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922. doi:10.1161/01.RES.0000261924.76669.36

    Article  PubMed  CAS  Google Scholar 

  55. Miyamoto S, Murphy AN, Brown JH (2009) Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 41:169–180. doi:10.1007/s10863-009-9205-y

    Article  PubMed  CAS  Google Scholar 

  56. Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67. doi:10.1146/annurev.physiol.69.031905.163645

    Article  PubMed  CAS  Google Scholar 

  57. Murray CI, Kane LA, Uhrigshardt H, Wang SB, Van Eyk JE (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol Cell Proteomics 10:M110.004721. doi:10.1074/mcp.M110.004721

    Article  PubMed  Google Scholar 

  58. Murriel CL, Mochly-Rosen D (2003) Opposing roles of delta and epsilon PKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Arch Biochem Biophys 420:246–254. doi:10.1016/j.abb.2003.08.038

    Article  PubMed  CAS  Google Scholar 

  59. Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3:555–565. doi:10.1038/nrm878

    Article  PubMed  CAS  Google Scholar 

  60. Nguyen T, Wong R, Wang G, Gucek M, Steenbergen C, Murphy E (2012) Acute inhibition of GSK causes mitochondrial remodeling. Am J Physiol Heart Circ Physiol 302:H2439–H2445. doi:10.1152/ajpheart.00033.2012

    Article  PubMed  CAS  Google Scholar 

  61. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34:33–43. doi:10.1016/S0891-5849(02)01179-6

    Article  PubMed  CAS  Google Scholar 

  62. Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C (2011) Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid Redox Signal 14:833–850. doi:10.1089/ars.2010.3245

    Article  PubMed  CAS  Google Scholar 

  63. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101:168–179. doi:10.1007/s00395-005-0543-6

    Article  PubMed  CAS  Google Scholar 

  64. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458. doi:10.1111/j.1582-4934.2007.00210.x

    Article  PubMed  CAS  Google Scholar 

  65. Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75:168–177. doi:10.1016/j.cardiores.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  66. Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–599. doi:10.1089/ars.2011.4459

    Article  PubMed  CAS  Google Scholar 

  67. Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, Mancardi D, Pagliaro P (2009) Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta 1787:794–801. doi:10.1016/j.bbabio.2009.03.013

    Article  PubMed  CAS  Google Scholar 

  68. Penna C, Perrelli MG, Tullio F, Moro F, Parisella ML, Merlino A, Pagliaro P (2011) Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation. Pflugers Arch 462:219–233. doi:10.4330/wjc.v3.i6.186

    Article  PubMed  CAS  Google Scholar 

  69. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189. doi:10.1007/s00395-006-0584-5

    Article  PubMed  CAS  Google Scholar 

  70. Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3:186–200. doi:10.4330/wjc.v3.i6.186

    Article  PubMed  Google Scholar 

  71. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miró E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101. doi:10.1161/01.RES.0000230315.56904.de

    Article  PubMed  CAS  Google Scholar 

  72. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741. doi:10.1152/ajpheart.00553.2011

    Article  PubMed  CAS  Google Scholar 

  73. Sánchez JA, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Fernández-Sanz C, Ruiz-Meana M, Alburquerque-Béjar JJ, García-Dorado D (2013) Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. Basic Res Cardiol 108:351. doi:10.1007/s00395-013-0351-3

    Article  PubMed  Google Scholar 

  74. Sasaki K, Sato M, Umezawa Y (2003) Fluorescent indicators for Akt/protein kinase B and dynamics of Akt activity visualized in living cells. J Biol Chem 278:30945–30951. doi:10.1074/jbc.M212167200

    Article  PubMed  CAS  Google Scholar 

  75. Sivaraman V, Mudalagiri NR, Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Hausenloy DJ, Yellon DM (2007) Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol 102:453–459. doi:10.1007/s00395-007-0664-1

    Article  PubMed  Google Scholar 

  76. Skyschally A, Schulz R, Heusch G (2008) Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz 33:88–100. doi:10.1007/s00059-008-3101-9

    Article  PubMed  Google Scholar 

  77. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Heusch G, Schulz R (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  78. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi:10.1007/s00395-009-0040-4

    Article  PubMed  Google Scholar 

  79. Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S (2012) Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther 26:227–237. doi:10.1007/s10557-012-6376-2

    Article  PubMed  CAS  Google Scholar 

  80. Steenbergen C, Das S, Su J, Wong R, Murphy E (2009) Cardioprotection and altered mitochondrial adenine nucleotide transport. Basic Res Cardiol 104:149–156. doi:10.1007/s00395-009-0002-x

    Article  PubMed  CAS  Google Scholar 

  81. Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2006) Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 11:1583–1593. doi:10.1007/s10495-006-9037-8

    Article  PubMed  CAS  Google Scholar 

  82. Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296. doi:10.1161/CIRCRESAHA.109.209452

    Article  PubMed  CAS  Google Scholar 

  83. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ Channel α1 subunit and reduced Ischemia/Reperfusion Injury. Circ Res 98:403–411. doi:10.1161/01.RES.0000202707.79018.0a

    Article  PubMed  CAS  Google Scholar 

  84. Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH (2007) Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci 81:1223–1227. doi:10.1016/j.lfs.2007.08.031

    Article  PubMed  CAS  Google Scholar 

  85. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. doi:10.1126/science.1164551

    Article  PubMed  CAS  Google Scholar 

  86. Yang BK, Vivas EX, Reiter CD, Gladwin MT (2003) Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic Res 37:1–10. doi:10.1080/1071576021000033112

    Article  PubMed  CAS  Google Scholar 

  87. Yang XM, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100:57–63. doi:10.1007/s00395-004-0498-4

    Article  PubMed  CAS  Google Scholar 

  88. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  PubMed  CAS  Google Scholar 

  89. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588. doi:10.1152/ajpheart.01064.2002

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Donatella Gattullo for insightful suggestions and Sara Femminò for technical assistance. This work was supported by National Institutes of Cardiovascular Research (INRC-2010, to PP); Regione Piemonte (CP, PP), ex-60 % (CP, PP), PRIN-2008 (CP) and AIRC IG 13009 (VP).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pagliaro.

Additional information

C. Penna, M.-G. Perrelli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penna, C., Perrelli, MG., Tullio, F. et al. Diazoxide postconditioning induces mitochondrial protein S-Nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE. Basic Res Cardiol 108, 371 (2013). https://doi.org/10.1007/s00395-013-0371-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0371-z

Keywords

Navigation