Skip to main content

Advertisement

Log in

Sgk1 sensitivity of Na+/H+ exchanger activity and cardiac remodeling following pressure overload

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Sustained increase of cardiac workload is known to trigger cardiac remodeling with eventual development of cardiac failure. Compelling evidence points to a critical role of enhanced cardiac Na+/H+ exchanger (NHE1) activity in the underlying pathophysiology. The signaling triggering up-regulation of NHE1 remained, however, ill defined. The present study explored the involvement of the serum- and glucocorticoid-inducible kinase Sgk1 in cardiac remodeling due to transverse aortic constriction (TAC). To this end, experiments were performed in gene targeted mice lacking functional Sgk1 (sgk1 /) and their wild-type controls (sgk1 +/+). Transcript levels have been determined by RT-PCR, cytosolic pH (pH i ) utilizing 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, Na+/H+ exchanger activity by the Na+-dependent realkalinization after an ammonium pulse, ejection fraction (%) utilizing cardiac cine magnetic resonance imaging and cardiac glucose uptake by PET imaging. As a result, TAC increased the mRNA expression of Sgk1 in sgk1 +/+ mice, paralleled by an increase in Nhe1 transcript levels as well as Na+/H+ exchanger activity, all effects virtually abrogated in sgk1 / mice. In sgk1 +/+ mice, TAC induced a decrease in Pgc1a mRNA expression, while Spp1 mRNA expression was increased, both effects diminished in the sgk1 / mice. TAC was followed by a significant increase of heart and lung weight in sgk1 +/+ mice, an effect significantly blunted in sgk1 / mice. TAC increased the transcript levels of Anp and Bnp, effects again significantly blunted in sgk1 / mice. TAC increased transcript levels of Collagen I and III as well as Ctgf mRNA and CTGF protein abundance, effects significantly blunted in sgk1 / mice. TAC further decreased the ejection fraction in sgk1 +/+ mice, an effect again attenuated in sgk1 / mice. Also, cardiac FDG-glucose uptake was increased to a larger extent in sgk1 +/+ mice than in sgk1 / mice after TAC. These observations point to an important role for SGK1 in cardiac remodeling and development of heart failure following an excessive work load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Anp:

Atrial natriuretic peptide

Bnp:

Brain natriuretic peptide

Ctgf:

Connective tissue growth factor

EF:

Ejection fraction [(end-diastolic volume – end-systolic volume)/end-diastolic volume]

LV:

Left ventricle

MRI:

Magnetic resonance imaging

NHE:

Na+/H+ exchanger

Pgc1a:

Peroxisome proliferator activated receptor γ coactivator 1 alpha

PI3K:

Phosphatidylinositide 3 kinase

PET:

Positron emission tomography

SGK1:

Serum- and glucocorticoid-inducible kinase 1

TAC:

Transverse aortic constriction

References

  1. Aker S, Snabaitis AK, Konietzka I, Van De SA, Bongler K, Avkiran M, Heusch G, Schulz R (2004) Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart failure in rabbits. Cardiovasc Res 63:273–282. doi:10.1016/j.cardiores.2004.04.014

    Article  PubMed  CAS  Google Scholar 

  2. Akutsu N, Lin R, Bastien Y, Bestawros A, Enepekides DJ, Black MJ, White JH (2001) Regulation of gene expression by 1α,25-dihydroxyvitamin D3 and its analog EB1089 under growth-inhibitory conditions in squamous carcinoma cells. Mol Endocrinol 15:1127–1139. doi:10.1210/me.15.7.1127

    Article  PubMed  CAS  Google Scholar 

  3. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  4. Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62. doi:10.1016/S0959-437X(98)80062-2

    Article  PubMed  CAS  Google Scholar 

  5. Alesutan IS, Ureche ON, Laufer J, Klaus F, Zurn A, Lindner R, Strutz-Seebohm N, Tavare JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2010) Regulation of the glutamate transporter EAAT4 by PIKfyve. Cell Physiol Biochem 25:187–194. doi:10.1159/000276569

    Article  PubMed  CAS  Google Scholar 

  6. Allen DG, Xiao XH (2003) Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res 57:934–941. doi:10.1016/S0008-6363(02)00836-2

    Article  PubMed  CAS  Google Scholar 

  7. Alliston TN, Gonzalez-Robayna IJ, Buse P, Firestone GL, Richards JS (2000) Expression and localization of serum/glucocorticoid-induced kinase in the rat ovary: relation to follicular growth and differentiation. Endocrinology 141:385–395. doi:10.1210/en.141.1.385

    Article  PubMed  CAS  Google Scholar 

  8. Alliston TN, Maiyar AC, Buse P, Firestone GL, Richards JS (1997) Follicle stimulating hormone-regulated expression of serum/glucocorticoid-inducible kinase in rat ovarian granulosa cells: a functional role for the Sp1 family in promoter activity. Mol Endocrinol 11:1934–1949. doi:10.1210/me.11.13.1934

    Article  PubMed  CAS  Google Scholar 

  9. Alvin Z, Laurence GG, Coleman BR, Zhao A, Hajj-Moussa M, Haddad GE (2011) Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can J Physiol Pharmacol 89:206–215. doi:10.1139/Y11-011

    Article  PubMed  CAS  Google Scholar 

  10. Aoyama T, Matsui T, Novikov M, Park J, Hemmings B, Rosenzweig A (2005) Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 111:1652–1659. doi:10.1161/01.CIR.0000160352.58142.06

    Article  PubMed  CAS  Google Scholar 

  11. Baartscheer A (2006) Chronic inhibition of Na(+)/H(+)-exchanger in the heart. Curr Vasc Pharmacol 4:23–29. doi:10.2174/157016106775203117

    Article  PubMed  CAS  Google Scholar 

  12. Belaiba RS, Djordjevic T, Bonello S, Artunc F, Lang F, Hess J, Gorlach A (2006) The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: role in redox-sensitive regulation of tissue factor by thrombin. Circ Res 98:828–836. doi:10.1161/01.RES.0000210539.54861.27

    Article  PubMed  CAS  Google Scholar 

  13. Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, Roden R, Asano K, Blaxall BC, Wu SC, Communal C, Singh K, Colucci W, Bristow MR, Port DJ (2000) Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 32:817–830. doi:10.1006/jmcc.2000.1123

    Article  PubMed  CAS  Google Scholar 

  14. Bohmer C, Sopjani M, Klaus F, Lindner R, Laufer J, Jeyaraj S, Lang F, Palmada M (2010) The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19. Cell Physiol Biochem 25:723–732. doi:10.1159/000315092

    Article  PubMed  Google Scholar 

  15. Boiteux A, Hess B (1981) Design of glycolysis. Philos Trans R Soc Lond B Biol Sci 293:5–22. doi:10.1098/rstb.1981.0056

    Article  PubMed  CAS  Google Scholar 

  16. Borst O, Schmidt EM, Munzer P, Schonberger T, Towhid ST, Elvers M, Leibrock C, Schmid E, Eylenstein A, Kuhl D, May AE, Gawaz M, Lang F (2011) The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood doi:10.1182/blood-2011-06-359976 (in press)

  17. Boyarsky G, Ganz MB, Sterzel RB, Boron WF (1988) pH regulation in single glomerular mesangial cells. II. Na+-dependent and -independent Cl(−)-HCO3-exchangers. Am J Physiol 255:C857–C869

    PubMed  CAS  Google Scholar 

  18. Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 96:2514–2519. doi:10.1073/pnas.96.5.2514

    Article  PubMed  CAS  Google Scholar 

  19. Cingolani HE, Ennis IL, Aiello EA, Perez NG (2011) Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Arch. doi:10.1007/s00424-011-0930-9 (in press)

  20. Damilano F, Perino A, Hirsch E (2010) PI3K kinase and scaffold functions in heart. Ann NY Acad Sci 1188:39–45. doi:10.1111/j.1749-6632.2009.05081.x

    Article  PubMed  CAS  Google Scholar 

  21. Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10:3207–3214

    PubMed  CAS  Google Scholar 

  22. Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM (2005) Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res 97:372–379. doi:10.1161/01.RES.0000179226.34112.6d

    Article  PubMed  CAS  Google Scholar 

  23. Eigel BN, Hadley RW (1999) Contribution of the Na(+) channel and Na(+)/H(+) exchanger to the anoxic rise of [Na(+)] in ventricular myocytes. Am J Physiol 277:H1817–H1822

    PubMed  CAS  Google Scholar 

  24. Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ (2002) Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ Res 90:814–819. doi:10.1161/01.RES.0000014966.97486.C0

    Article  PubMed  CAS  Google Scholar 

  25. Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96:7059–7064. doi:10.1073/pnas.96.12.7059

    Article  PubMed  CAS  Google Scholar 

  26. Feng Y, Wang Q, Wang Y, Yard B, Lang F (2005) SGK1-mediated fibronectin formation in diabetic nephropathy. Cell Physiol Biochem 16:237–244. doi:10.1159/000089849

    Article  PubMed  CAS  Google Scholar 

  27. Firestone GL, Giampaolo JR, O’Keeffe BA (2003) Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell Physiol Biochem 13:1–12. doi:10.1159/000070244

    Article  PubMed  CAS  Google Scholar 

  28. Fliegel L (2009) Regulation of the Na(+)/H(+) exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets 13:55–68. doi:10.1517/14728220802600707

    Article  PubMed  CAS  Google Scholar 

  29. Frohlich ED, Gonzalez A, Diez J (2011) Hypertensive left ventricular hypertrophy risk: beyond adaptive cardiomyocytic hypertrophy. J Hypertens 29:17–26. doi:10.1097/HJH.0b013e328340d787

    Article  PubMed  CAS  Google Scholar 

  30. Fuster DG, Bobulescu IA, Zhang J, Wade J, Moe OW (2007) Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol 292:F577–F585. doi:10.1152/ajprenal.00240.2006

    Article  PubMed  CAS  Google Scholar 

  31. Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, Lang F (2002) IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Arch 443:625–634. doi:10.1007/s00424-001-0741-5

    Article  PubMed  CAS  Google Scholar 

  32. Garciarena CD, Caldiz CI, Correa MV, Schinella GR, Mosca SM, Chiappe de Cingolani GE, Cingolani HE, Ennis IL (2008) Na+/H+ exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action. J Appl Physiol 105:1706–1713. doi:10.1152/japplphysiol.90616.2008

    Article  PubMed  CAS  Google Scholar 

  33. Gehring EM, Zurn A, Klaus F, Laufer J, Sopjani M, Lindner R, Strutz-Seebohm N, Tavare JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2009) Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 24:361–368. doi:10.1159/000257428

    Article  PubMed  CAS  Google Scholar 

  34. Gilberto DB, Motzel SL, Bone AN, Burns CL, Zeoli AH, Lodge KE, Goode TL (2002) Use of three infusion pumps for postoperative administration of buprenorphine or morphine in dogs. J Am Vet Med Assoc 220:1655–1660, 1650

    Google Scholar 

  35. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS (2000) Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 14:1283–1300. doi:10.1210/me.14.8.1283

    Article  PubMed  CAS  Google Scholar 

  36. Gruson D, Ginion A, Decroly N, Lause P, Vanoverschelde JL, Ketelslegers JM, Bertrand L, Thissen JP (2011) Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3beta pathway. Heart Vessels. doi:10.1007/s00380-011-0141-5 (in press)

  37. Guo D, Kassiri Z, Basu R, Chow FL, Kandalam V, Damilano F, Liang W, Izumo S, Hirsch E, Penninger JM, Backx PH, Oudit GY (2010) Loss of PI3K gamma enhances cAMP-dependent MMP remodeling of the myocardial N-cadherin adhesion complexes and extracellular matrix in response to early biomechanical stress. Circ Res 107:1275–1289. doi:10.1161/CIRCRESAHA.110.229054

    Article  PubMed  CAS  Google Scholar 

  38. Hamacher K, Coenen HH, Stocklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  39. Haussinger D, Lang F (1991) Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim Biophys Acta 1071:331–350. doi:10.1016/0304-4157(91)90001-D

    PubMed  CAS  Google Scholar 

  40. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277. doi:10.1152/physrev.00037.2007

    Article  PubMed  CAS  Google Scholar 

  41. Javadov S, Baetz D, Rajapurohitam V, Zeidan A, Kirshenbaum LA, Karmazyn M (2006) Antihypertrophic effect of Na+/H+ exchanger isoform 1 inhibition is mediated by reduced mitogen-activated protein kinase activation secondary to improved mitochondrial integrity and decreased generation of mitochondrial-derived reactive oxygen species. J Pharmacol Exp Ther 317:1036–1043. doi:10.1124/jpet.105.100107

    Article  PubMed  CAS  Google Scholar 

  42. Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG, Karmazyn M (2008) NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res 77:416–424. doi:10.1093/cvr/cvm039

    Article  PubMed  CAS  Google Scholar 

  43. Javadov S, Huang C, Kirshenbaum L, Karmazyn M (2005) NHE-1 inhibition improves impaired mitochondrial permeability transition and respiratory function during postinfarction remodelling in the rat. J Mol Cell Cardiol 38:135–143. doi:10.1016/j.yjmcc.2004.10.007

    Article  PubMed  CAS  Google Scholar 

  44. Javadov S, Purdham DM, Zeidan A, Karmazyn M (2006) NHE-1 inhibition improves cardiac mitochondrial function through regulation of mitochondrial biogenesis during postinfarction remodeling. Am J Physiol Heart Circ Physiol 291:H1722–H1730. doi:10.1152/ajpheart.00159.2006

    Article  PubMed  CAS  Google Scholar 

  45. Javadov S, Rajapurohitam V, Kilic A, Hunter JC, Zeidan A, Said FN, Escobales N, Karmazyn M (2011) Expression of mitochondrial fusion–fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106:99–109. doi:10.1007/s00395-010-0122-3

    Article  PubMed  CAS  Google Scholar 

  46. Javadov S, Rajapurohitam V, Kilic A, Zeidan A, Choi A, Karmazyn M (2009) Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol 46:998–1007. doi:10.1016/j.yjmcc.2008.12.023

    Article  PubMed  CAS  Google Scholar 

  47. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res 85:777–786

    Article  PubMed  CAS  Google Scholar 

  48. Karmazyn M, Kilic A, Javadov S (2008) The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol 44:647–653. doi:10.1016/j.yjmcc.2008.01.005

    Article  PubMed  CAS  Google Scholar 

  49. Kilic A, Javadov S, Karmazyn M (2009) Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 46:360–369. doi:10.1016/j.yjmcc.2008.11.018

    Article  PubMed  CAS  Google Scholar 

  50. Kobayashi T, Cohen P (1999) Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339(Pt 2):319–328. doi:10.1042/0264-6021:3390319

    Article  PubMed  CAS  Google Scholar 

  51. Koliakos G, Befani C, Paletas K, Kaloyianni M (2007) Effect of endothelin on sodium/hydrogen exchanger activity of human monocytes and atherosclerosis-related functions. Ann NY Acad Sci 1095:274–291. doi:10.1196/annals.1397.031

    Article  PubMed  CAS  Google Scholar 

  52. Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90:194–201. doi:10.1093/cvr/cvr071

    Article  PubMed  CAS  Google Scholar 

  53. Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Grigorescu F (1994) Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J 13:2313–2321

    PubMed  CAS  Google Scholar 

  54. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178. doi:10.1152/physrev.00050.2005

    Article  PubMed  CAS  Google Scholar 

  55. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  56. Lang F, Cohen P (2001) Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Sci STKE 2001:re17. doi:10.1126/stke.2001.108.re17

  57. Lang F, Gorlach A (2010) Heterocyclic indazole derivatives as SGK1 inhibitors, WO2008138448. Expert Opin Ther Pat 20:129–135. doi:10.1517/13543770903365209

    Article  PubMed  CAS  Google Scholar 

  58. Lang F, Klingel K, Wagner CA, Stegen C, Warntges S, Friedrich B, Lanzendorfer M, Melzig J, Moschen I, Steuer S, Waldegger S, Sauter M, Paulmichl M, Gerke V, Risler T, Gamba G, Capasso G, Kandolf R, Hebert SC, Massry SG, Broer S (2000) Deranged transcriptional regulation of cell-volume-sensitive kinase hSGK in diabetic nephropathy. Proc Natl Acad Sci USA 97:8157–8162. doi:10.1073/pnas.97.14.8157

    Article  PubMed  CAS  Google Scholar 

  59. Lawrence SP, Holman GD, Koumanov F (2010) Translocation of the Na+/H+ exchanger 1 (NHE1) in cardiomyocyte responses to insulin and energy-status signalling. Biochem J 432:515–523. doi:10.1042/BJ20100717

    Article  PubMed  CAS  Google Scholar 

  60. Leineweber K, Aker S, Beilfuss A, Rekasi H, Konietzka I, Martin C, Heusch G, Schulz R (2006) Inhibition of Na+/H+-exchanger with sabiporide attenuates the downregulation and uncoupling of the myocardial beta-adrenoceptor system in failing rabbit hearts. Br J Pharmacol 148:137–146. doi:10.1038/sj.bjp.0706714

    Article  PubMed  CAS  Google Scholar 

  61. Leineweber K, Heusch G, Schulz R (2007) Regulation and role of the presynaptic and myocardial Na+/H+ exchanger NHE1: effects on the sympathetic nervous system in heart failure. Cardiovasc Drug Rev 25:123–131. doi:10.1111/j.1527-3466.2007.00010.x

    Article  PubMed  CAS  Google Scholar 

  62. Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90:202–209. doi:10.1093/cvr/cvr038

    Article  PubMed  CAS  Google Scholar 

  63. Lister K, Autelitano DJ, Jenkins A, Hannan RD, Sheppard KE (2006) Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Cardiovasc Res 70:555–565. doi:10.1016/j.cardiores.2006.02.010

    Article  PubMed  CAS  Google Scholar 

  64. Morris K (2002) Targeting the myocardial sodium-hydrogen exchange for treatment of heart failure. Expert Opin Ther Targets 6:291–298

    Article  PubMed  Google Scholar 

  65. Mraiche F, Fliegel L (2011) Elevated expression of activated Na(+)/H (+) exchanger protein induces hypertrophy in isolated rat neonatal ventricular cardiomyocytes. Mol Cell Biochem. doi:10.1007/s11010-011-0933-z (in press)

  66. Mraiche F, Oka T, Gan XT, Karmazyn M, Fliegel L (2011) Activated NHE1 is required to induce early cardiac hypertrophy in mice. Basic Res Cardiol 106:603–616. doi:10.1007/s00395-011-0161-4

    Article  PubMed  CAS  Google Scholar 

  67. Mraiche F, Wagg CS, Lopaschuk GD, Fliegel L (2011) Elevated levels of activated NHE1 protect the myocardium and improve metabolism following ischemia/reperfusion injury. J Mol Cell Cardiol 50:157–164. doi:10.1016/j.yjmcc.2010.10.016

    Article  PubMed  CAS  Google Scholar 

  68. Nabeebaccus A, Zhang M, Shah AM (2011) NADPH oxidases and cardiac remodelling. Heart Fail Rev 16:5–12. doi:10.1007/s10741-010-9186-2

    Article  PubMed  CAS  Google Scholar 

  69. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA (2000) Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 275:4693–4698. doi:10.1074/jbc.275.7.4693

    Article  PubMed  CAS  Google Scholar 

  70. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899. doi:10.1161/CIRCRESAHA.108.175141

    Article  PubMed  CAS  Google Scholar 

  71. Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G (1999) sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274:16973–16978. doi:10.1074/jbc.274.24.16973

    Article  PubMed  CAS  Google Scholar 

  72. Nemeth ZH, Deitch EA, Lu Q, Szabo C, Hasko G (2002) NHE blockade inhibits chemokine production and NF-kappaB activation in immunostimulated endothelial cells. Am J Physiol Cell Physiol 283:C396–C403. doi:10.1152/ajpcell.00491.2001

    PubMed  CAS  Google Scholar 

  73. Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565. doi:10.1007/s00424-003-1110-3

    Article  PubMed  CAS  Google Scholar 

  74. Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260. doi:10.1093/cvr/cvp014

    Article  PubMed  CAS  Google Scholar 

  75. Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA (1999) Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 18:3024–3033. doi:10.1093/emboj/18.11.3024

    Article  PubMed  CAS  Google Scholar 

  76. Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:527–552. doi:10.1146/annurev.pharmtox.42.092001.143801

    Article  PubMed  CAS  Google Scholar 

  77. Reiter RJ, Manchester LC, Fuentes-Broto L, Tan DX (2010) Cardiac hypertrophy and remodelling: pathophysiological consequences and protective effects of melatonin. J Hypertens 28(Suppl 1):S7–S12. doi:10.1097/01.hjh.0000388488.51083.2b

    Article  PubMed  CAS  Google Scholar 

  78. Rexhepaj R, Rotte A, Pasham V, Gu S, Kempe DS, Lang F (2010) PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport. Cell Physiol Biochem 25:715–722. doi:10.1159/000315091

    Article  PubMed  CAS  Google Scholar 

  79. Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J (1995) Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res 50:223–254

    PubMed  CAS  Google Scholar 

  80. Rieder CV, Fliegel L (2003) Transcriptional regulation of Na+/H+ exchanger expression in the intact mouse. Mol Cell Biochem 243:87–95. doi:10.1023/A:1021643608619

    Article  PubMed  CAS  Google Scholar 

  81. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J Jr, Chien KR (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 88:8277–8281. doi:10.1073/pnas.88.18.8277

    Article  PubMed  CAS  Google Scholar 

  82. Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61:269–280. doi:10.1016/j.phrs.2009.11.012

    Article  PubMed  CAS  Google Scholar 

  83. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  84. Rotte A, Bhandaru M, Foller M, Biswas R, Mack AF, Friedrich B, Rexhepaj R, Nasir O, Ackermann TF, Boini KM, Kunzelmann K, Behrens J, Lang F (2009) APC sensitive gastric acid secretion. Cell Physiol Biochem 23:133–142

    Article  PubMed  CAS  Google Scholar 

  85. Rotte A, Mack AF, Bhandaru M, Kempe DS, Beier N, Scholz W, Dicks E, Potzsch S, Kuhl D, Lang F (2009) Pioglitazone induced gastric acid secretion. Cell Physiol Biochem 24:193–200

    Article  PubMed  CAS  Google Scholar 

  86. Rotte A, Pasham V, Yang W, Eichenmuller M, Bhandaru M, Shumilina E, Lang F (2010) Phosphoinositide 3-kinase-dependent regulation of Na+/H+ exchanger in dendritic cells. Pflugers Arch 460:1087–1096

    Article  PubMed  CAS  Google Scholar 

  87. Sarigianni M, Tsapas A, Mikhailidis DP, Kaloyianni M, Koliakos G, Paletas K (2010) Involvement of signaling molecules on Na/H exchanger-1 activity in human monocytes. Open Cardiovasc Med J 4:181–188

    Article  PubMed  CAS  Google Scholar 

  88. Segalen C, Longnus SL, Baetz D, Counillon L, Van Obberghen E (2008) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes. Endocrinology 149:1490–1498. doi:10.1210/en.2007-1326

    Article  PubMed  CAS  Google Scholar 

  89. Shigaev A, Asher C, Latter H, Garty H, Reuveny E (2000) Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am J Physiol Renal Physiol 278:F613–F619

    PubMed  CAS  Google Scholar 

  90. Snabaitis AK, Cuello F, Avkiran M (2008) Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1. Circ Res 103:881–890. doi:10.1161/CIRCRESAHA.108.175877

    Article  PubMed  CAS  Google Scholar 

  91. Steffan JJ, Williams BC, Welbourne T, Cardelli JA (2010) HGF-induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+-H+ exchangers. J Cell Sci 123:1151–1159. doi:10.1242/jcs.063644

    Article  PubMed  CAS  Google Scholar 

  92. Vallon V, Wyatt AW, Klingel K, Huang DY, Hussain A, Berchtold S, Friedrich B, Grahammer F, Belaiba RS, Gorlach A, Wulff P, Daut J, Dalton ND, Ross J Jr, Flogel U, Schrader J, Osswald H, Kandolf R, Kuhl D, Lang F (2006) SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. J Mol Med 84:396–404. doi:10.1007/s00109-005-0027-z

    Article  PubMed  CAS  Google Scholar 

  93. Voelkl JG, Haubner BJ, Kremser C, Mayr A, Klug G, Loizides A, Muller S, Pachinger O, Schocke M, Metzler B (2011) Cardiac imaging using clinical 1.5 T MRI scanners in a murine ischemia/reperfusion model. J Biomed Biotechnol 2011:185683. doi:10.1155/2011/185683

  94. Waisbren SJ, Geibel J, Boron WF, Modlin IM (1994) Luminal perfusion of isolated gastric glands. Am J Physiol 266:C1013–C1027

    PubMed  CAS  Google Scholar 

  95. Waldegger S, Barth P, Raber G, Lang F (1997) Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci USA 94:4440–4445. doi:10.1073/pnas.94.9.4440

    Article  PubMed  CAS  Google Scholar 

  96. Waldegger S, Klingel K, Barth P, Sauter M, Rfer ML, Kandolf R, Lang F (1999) h-sgk serine-threonine protein kinase gene as transcriptional target of transforming growth factor beta in human intestine. Gastroenterology 116:1081–1088. doi:10.1016/S0016-5085(99)70011-9

    Article  PubMed  CAS  Google Scholar 

  97. Wang D, Zhang H, Lang F, Yun CC (2007) Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor. Am J Physiol Cell Physiol 292:C396–C404. doi:10.1152/ajpcell.00345.2006

    Article  PubMed  CAS  Google Scholar 

  98. Wang Y, Meyer JW, Ashraf M, Shull GE (2003) Mice with a null mutation in the NHE1 Na+-H+ exchanger are resistant to cardiac ischemia-reperfusion injury. Circ Res 93:776–782. doi:10.1161/01.RES.0000094746.24774.DC

    Article  PubMed  CAS  Google Scholar 

  99. Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D (2002) Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 110:1263–1268. doi:10.1172/JCI200215696

    PubMed  CAS  Google Scholar 

  100. Xue J, Mraiche F, Zhou D, Karmazyn M, Oka T, Fliegel L, Haddad GG (2010) Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol Genomics 42:374–383. doi:10.1152/physiolgenomics.00064.2010

    Article  PubMed  CAS  Google Scholar 

  101. Yokoyama H, Gunasegaram S, Harding SE, Avkiran M (2000) Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol 36:534–540. doi:10.1016/S0735-1097(00)00730-0

    Article  PubMed  CAS  Google Scholar 

  102. Yu W, Chen C, Fu Y, Wang X, Wang W (2010) Insulin signaling: a possible pathogenesis of cardiac hypertrophy. Cardiovasc Ther 28:101–105. doi:10.1111/j.1755-5922.2009.00120.x

    Article  PubMed  CAS  Google Scholar 

  103. Yun CC, Chen Y, Lang F (2002) Glucocorticoid activation of Na(+)/H(+) exchanger isoform 3 revisited. The roles of SGK1 and NHERF2. J Biol Chem 277:7676–7683. doi:10.1074/jbc.M107768200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maren Koenig (PET), Mareike Lehnhoff (PET), Funda Cay (PET) and Salvador Castaneda (MR) for outstanding technical support during the imaging measurements. Radiotracers were produced by the radiopharmacy group of the Department of Preclinical Imaging and Radiopharmacy at the University Hospital of Tübingen. We also thank Evi Faber and Klaudia Kloß for their valuable technical support. This work was supported by grants from the Deutsche Forschungsgemeinschaft (La315/4-5 and SFB-Transregio 19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2011_236_MOESM1_ESM.ppt

Supplementary material 1 Representative animated images from cardiac cine magnetic resonance imaging. Example videos depicting longitudinal axis scan of sgk1 +/+ (A) and sgk1 / (B) mouse hearts 5 weeks after TAC procedure. (PPT 5098 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voelkl, J., Lin, Y., Alesutan, I. et al. Sgk1 sensitivity of Na+/H+ exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol 107, 236 (2012). https://doi.org/10.1007/s00395-011-0236-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-011-0236-2

Keywords

Navigation