Skip to main content

Advertisement

Log in

Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Shortly after birth, mammalian cardiomyocytes irreversibly exit from the cell cycle and become terminally differentiated. The cellular mechanisms responsible for the cessation of cell division and terminal differentiation of cardiomyocytes soon after birth have intrigued developmental biologists as well as cardiovascular physicians, but the genetic cues for the irreversible exit from the cell cycle soon after birth remain largely unknown. We examined whether and if so how oxidative stress to mammalian hearts during fetal–neonatal transition produces changes in the proliferative activity and terminal differentiation of cardiomyocytes. Scavenging of reactive oxygen species (ROS) during fetal–neonatal transition, especially after birth, resulted in an increase in the proliferative activity and a decrease in the ratio of binucleated cardiomyocytes. Exposure to ROS in cultured cardiomyocytes increased the activity of p38 MAPK and the expression of connexin 43 (Cx43). Not only knockdown of Cx43 using siRNA but also the inhibition of p38 MAPK activity resulted in a significant decrease in the production of ROS in cardiomyocytes, suggesting that the signaling pathway ROS–p38 MAPK–Cx43 (especially, Cx43 at mitochondria, mtCx43) constituted a closed regulatory system with positive feedback. In addition, continuous scavenging of ROS or suppression of p38 MAPK activity for 4 days after birth resulted in a significant decrease in the expression of mtCx43 and in the number of binucleated cardiomyocytes. This study demonstrated that the ROS-induced formation of a positive-feedback loop ROS–p38 MAPK–mtCx43 for the sustained activation of p38 MAPK soon after birth possibly contributes to the loss of cell division and binucleation in mammalian cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Lisa FD, Heusch G (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244. doi:10.1016/j.cardiores.2005.04.014

    Article  PubMed  CAS  Google Scholar 

  2. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. doi:10.1007/s00395-009-0007-5

    Article  PubMed  CAS  Google Scholar 

  3. Carlson BM (1988) Patten’s foundations of embryology. McGraw-Hill, New York

    Google Scholar 

  4. Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982. doi:10.1016/j.freeradbiomed.2005.10.043

    Article  PubMed  CAS  Google Scholar 

  5. Claycomb WC (1992) Control of cardiac muscle cell division. Trends Cardiovasc Med 2:231–236. doi:10.1016/1050-1738(92)90030-V

    Article  PubMed  CAS  Google Scholar 

  6. Clubb FJ, Bishop SP (1984) Formation of binucleated myocardial cells in the neonatal rat: an index for growth hypertrophy. Lab Investig 50:571–577

    PubMed  Google Scholar 

  7. de Haan JB, Tymms MJ, Cristiano F, Kola I (1994) Expression of copper/zinc superoxide dismutase and glutathione peroxidase in organs of developing mouse embryos, fetuses, and neonates. Pediatr Res 35:188–196

    PubMed  Google Scholar 

  8. Ding L, Liang X-G, Hu Y, Zhu D-Y, Lou Y-J (2008) Involvement of p38 MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of marine embryonic stem cells in vitro. Stem Cells Dev 17:751–760. doi:10.1089/scd.2007.0206

    Article  PubMed  CAS  Google Scholar 

  9. Dost T, Cohen MV, Downey JM (2008) Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning. Basic Res Cardiol 103:378–384. doi:10.1007/s00395-008-0718-z

    Article  PubMed  Google Scholar 

  10. Engel FB, Hsieh PCH, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci 103:15546–15551. doi:10.1073/pnas.0607382103

    Article  PubMed  CAS  Google Scholar 

  11. Engel FB, Schebesta M, Keating MT (2006) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41:601–612. doi:10.1016/j.yjmcc.2006.06.012

    Article  PubMed  CAS  Google Scholar 

  12. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and biology of ageing. Nature 408:239–247. doi:10.1038/35041687

    Article  PubMed  CAS  Google Scholar 

  13. Frank L, Groseclose EE (1984) Preparation for birth into an O2-rich environment: the antioxidant enzymes in the developing rabbit lung. Pediatr Res 18:240–244. doi:10.1002/ppul.1950010427

    Article  PubMed  CAS  Google Scholar 

  14. Friel JK, Friesen RW, Harding SV, Roberts LJ (2004) Evidence of oxidative stress in full-term healthy infants. Pediatr Res 56:878–882. doi:10.1203/01.PDR.0000146032.98120.43

    Article  PubMed  CAS  Google Scholar 

  15. Gerdin E, Tyden O, Erickson UJ (1985) The development of antioxidant enzymatic defense in the perinatal rat lung: activities of superoxide dismutase, glutathione peroxidase, and catalase. Pediatr Res 19:687–691

    Article  PubMed  CAS  Google Scholar 

  16. Giepmans BNG (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245. doi:10.1016/j.cardiores.2003.12.009

    Article  PubMed  CAS  Google Scholar 

  17. Gros DB, Jongsma HJ (1996) Connexins in mammalian heart function. Bioessays 18:719–730. doi:10.1002/bies.950180907

    Article  PubMed  CAS  Google Scholar 

  18. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Lisa ED, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  PubMed  CAS  Google Scholar 

  19. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  20. Holmuhamedov EL, Jovanovi′c S, Dzeja PP, Jovanović A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol Heart Circ Physiol 275:H1567–H1576

    CAS  Google Scholar 

  21. Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common senescence-signaling pathway. Genes Cells 8:131–144. doi:10.1046/j.1365-2443.2003.00620.x

    Article  PubMed  CAS  Google Scholar 

  22. Izzotti A, Balansky RM, Camoirano A, Cartiglia C, Longobardi M, Tampa E, Flora SD (2003) Birth-related genomic and transcriptional changes in mouse lung. Modulation by transplacental N-acetylcysteine. Mutation Res 544:441–449. doi:10.1016/j.mrrev.2003.05.004

    Article  PubMed  CAS  Google Scholar 

  23. Jia G, Cheng G, Gangahar DM, Agrawal DK (2008) Involvement of connexin 43 in angiotensin II-induced migration and proliferation of saphenous vein smooth muscle cells via the MAPK-AP-1 signaling pathway. J Mol Cell Cardiol 44:882–890. doi:10.1016/j.yjmcc.2008.03.002

    Article  PubMed  CAS  Google Scholar 

  24. Kawahara K, Hachiro T, Yokokawa T, Nakajima T, Yamauchi Y, Nakayama Y (2006) Ischemia/reperfusion-induced death of cardiac myocytes: possible involvement of nitric oxide in the coordination of ATP supply and demand during ischemia. J Mol Cell Cardiol 40:35–46. doi:10.1016/j.yjmcc.2005.06.020

    Article  PubMed  CAS  Google Scholar 

  25. Kawahara K, Nakayama Y (2007) Fluctuations in the concentration of extracellular ATP synchronized with intracellular Ca2+ oscillatory rhythm in cultured cardiac myocytes. Chronobiol Intern 24:1035–1048. doi:10.1080/07420520701800843

    Article  CAS  Google Scholar 

  26. Kawahara K, Sato R, Iwabuchi S, Matsuyama D (2008) Rhythmic fluctuations in the concentration of intracellular Mg2+ in association with spontaneous rhythmic contraction in cultured cardiac myocytes. Chronobiol Intern 25:868–881. doi:10.1080/07420520802536387

    Article  CAS  Google Scholar 

  27. Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT (2002) Mitochondrial ROS initiate phosphorylation of p38 Map kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282:L1324–L1329. doi:10.1152/ajplung.00326.2001

    PubMed  CAS  Google Scholar 

  28. Lacerda L, McCarthy J, Mungly SFK, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751–762. doi:10.1007/s00395-010-0113-4

    Article  PubMed  CAS  Google Scholar 

  29. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasis to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746. doi:10.1006/jmcc.1996.0163

    Article  PubMed  CAS  Google Scholar 

  30. Lisa FD, Kaludercic N, Carpi A, Menabó R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66Shc and monoamine oxidase. Basic Res Cardiol 104:131–139. doi:10.1007/s00395-009-0008-4

    Article  PubMed  Google Scholar 

  31. Matsuyama D, Kawahara K (2009) Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol 104:631–642. doi:10.1007/s00395-009-0029-z

    Article  PubMed  CAS  Google Scholar 

  32. Muller DP (1987) Free radical problems of the newborn. Proc Nutr Soc 46:69–75. doi:10.1079/PNS19870009

    Article  PubMed  CAS  Google Scholar 

  33. Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, Feramisco JR, Karin M, Wang JYJ (2000) Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14:574–584. doi:10.1101/gad.14.5.574

    PubMed  CAS  Google Scholar 

  34. Rickett GMW, Kelley FJ (1990) Developmental expression of antioxidant enzymes in guinea pig lung and liver. Development 108:331–336

    PubMed  CAS  Google Scholar 

  35. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miró E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101. doi:10.1161/01.RES.0000230315.56904.de

    Article  PubMed  CAS  Google Scholar 

  36. Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC (2010) Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 120:1441–1453. doi:10.1172/JCI40927

    Article  PubMed  CAS  Google Scholar 

  37. Ruiz-Meana M, Rodríguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Drado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischemia-reperfusion injury. Cardiovasc Res 77:325–333. doi:10.1093/cvr/cvm062

    Article  PubMed  CAS  Google Scholar 

  38. Salameh A, Krautblatter S, Baeßler S, Karl S, Gomez DR, Dhein S, Pfeiffer D (2008) Signal transduction and transcriptional control of cardiac connexin43 up-regulation after α1-adrenoceptor stimulation. J Pharmacol Exp Ther 326:315–322. doi:10.1124/jpet.108.136663

    Article  PubMed  CAS  Google Scholar 

  39. Sastre J, Asensi M, Rodrigo F, Pallardó FV, Vento M, Viña J (1994) Antioxidant administration to the mother prevents oxidative stress associated with birth in the neonatal rat. Life Sci 54:2055–2059. doi:10.1016/0024-3205(94)00714-4

    Article  PubMed  CAS  Google Scholar 

  40. Sauer H, Rahimi G, Hescheler J, Wartenberg M (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Let 476:218–223. doi:10.1016/S0014-5793(00)01747-6

    Article  CAS  Google Scholar 

  41. Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700. doi:10.1016/S0008-6363(02)00319-X

    Article  PubMed  CAS  Google Scholar 

  42. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357. doi:10.1096/fj.02-0975fje

    PubMed  CAS  Google Scholar 

  43. Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Disc Today 13:38–43. doi:10.1016/j.drudis.2007.10.007

    Article  CAS  Google Scholar 

  44. Somma MP, Fasulo B, Cenci G, Cundari E, Gatti M (2002) Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol Biol Cell 13:2448–2460. doi:10.1091/mbc.01-12-0589

    Article  PubMed  CAS  Google Scholar 

  45. Wu Y-L, Piao D-M, Han X-H, Nan J-X (2008) Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biol Pharm Bull 31:1523–1529. doi:10.1248/bpb.31.1523

    Article  PubMed  CAS  Google Scholar 

  46. Yamauchi Y, Harada A, Kawahara K (2002) Changes in the fluctuation of interbeat intervals in spontaneously beating cardiac myocytes: experimental and modeling studies. Biol Cybern 86:147–154. doi:101007/s00422-001-0285-y

    Article  PubMed  Google Scholar 

  47. Zak R (1973) Cell proliferation during cardiac growth. Am J Cardiol 31:211–219. doi:10.1016/0002-9149(73)91034-5

    Article  PubMed  CAS  Google Scholar 

  48. Zhang G-X, Lu X-M, Kimura S, Nishiyama A (2007) Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res 76:204–212. doi:10.1016/j.cardiores.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  49. Zhu H (1997) Myocardial cellular development and morphogenesis. In: Langer GA (ed) The myocardium. Academic Press, San Diego, pp 33–80

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid for scientific research from the Ministry of Education, Science, and Culture of Japan (21650103 & 22300148) to K.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kawahara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuyama, D., Kawahara, K. Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth. Basic Res Cardiol 106, 815–828 (2011). https://doi.org/10.1007/s00395-011-0178-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0178-8

Keywords

Navigation