Skip to main content

Advertisement

Log in

The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO)-dependent soluble guanylate cyclase (sGC) activation is an important component of cardiac signal transduction pathways, including the cardioprotective signaling cascade induced by ischemic preconditioning (IPC). The sGCα subunit, which binds to the common sGCβ1 subunit, exists in two different isoforms, sGCα1 and sGCα2, but their relative physiological roles remain unknown. In the present study, we studied Langendorff-perfused isolated hearts of genetically engineered mice lacking functional sGCα1 (sGCα1KO mice), which is the predominant isoform in the heart. Our results show that the loss of sGCα1 has a positive inotropic and lusitropic effect on basal cardiac function, indicating an important role for sGCα1 in regulating basal myocardial contractility. Surprisingly, IPC led to a similar 35–40% reduction in infarct size and concomitant protein kinase Cε (PKCε) phosphorylation in both wild-type (WT) and sGCα1KO hearts subjected to 40 min of global ischemia and reperfusion. Inhibition of the activation of all sGC isoforms by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μmol/L) completely abolished the protection by IPC in WT and sGCα1KO hearts. NO-stimulated cGMP production was severely attenuated in sGCα1KO hearts compared to WT hearts, indicating that the sGCα2 isoform only produces minute amounts of cGMP after NO stimulation. Taken together, our results indicate that although sGCα1 importantly regulates cardiac contractility, it is not required for cardioprotection by IPC. Instead, our results suggest that possibly only minimal sGC activity, which in sGCα1KO hearts is provided by the sGCα2 isoform, is sufficient to transduce the cardioprotective signal induced by IPC via phosphorylation of PKCε.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abi-Gerges N, Fischmeister R, Mery PF (2001) G protein-mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ventricular myocytes. J Physiol 531(Pt 1):117–130. doi:10.1111/j.1469-7793.2001.0117j.x

    Article  PubMed  CAS  Google Scholar 

  2. Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291(5):H2067–H2074. doi:10.1152/ajpheart.00272.2006

    Article  PubMed  CAS  Google Scholar 

  3. Budworth J, Meillerais S, Charles I, Powell K (1999) Tissue distribution of the human soluble guanylate cyclases. Biochem Biophys Res Commun 263(3):696–701. doi:10.1006/bbrc.1999.1444

    Article  PubMed  CAS  Google Scholar 

  4. Burley D, Baxter G (2007) B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res Cardiol 102(6):529–541. doi:10.1007/s00395-007-0672-1

    Article  PubMed  CAS  Google Scholar 

  5. Buys ES, Cauwels A, Raher MJ, Passeri JJ, Hobai I, Cawley SM, Rauwerdink KM, Thibault H, Sips PY, Thoonen R, Scherrer-Crosbie M, Ichinose F, Brouckaert P, Bloch KD (2009) sGC{alpha}1{beta}1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models. Am J Physiol Heart Circ Physiol 297(2):H654–H663. doi:10.1152/ajpheart.00367.2009

    Article  PubMed  CAS  Google Scholar 

  6. Buys ES, Sips P, Vermeersch P, Raher MJ, Rogge E, Ichinose F, Dewerchin M, Bloch KD, Janssens S, Brouckaert P (2008) Gender-specific hypertension and responsiveness to nitric oxide in sGCalpha1 knockout mice. Cardiovasc Res 79(1):179–186. doi:10.1093/cvr/cvn068

    Article  PubMed  CAS  Google Scholar 

  7. Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113(18):2221–2228. doi:10.1161/circulationaha.105.599241

    Article  PubMed  CAS  Google Scholar 

  8. Cohen MV, Yang XM, Downey JM (2006) Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc Res 70(2):231–239. doi:10.1016/j.cardiores.2005.10.021

    Article  PubMed  CAS  Google Scholar 

  9. Cohen MV, Yang XM, Liu Y, Solenkova NV, Downey JM (2010) Cardioprotective PKG-independent NO signaling at reperfusion. Am J Physiol Heart Circ Physiol 299(6):H2028–H2036. doi:10.1152/ajpheart.00527.2010

    Article  PubMed  CAS  Google Scholar 

  10. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97(4):329–336. doi:10.1161/01.res.0000178451.08719.5b

    Article  PubMed  CAS  Google Scholar 

  11. Costa ADT, Pierre SV, Cohen MV, Downey JM, Garlid KD (2008) cGMP signaling in pre- and post-conditioning: the role of mitochondria. Cardiovasc Res 77(2):344–352. doi:10.1093/cvr/cvm050

    Article  PubMed  CAS  Google Scholar 

  12. D’Souza SP, Davis M, Baxter GF (2004) Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacol Ther 101(2):113–129. doi:10.1016/j.pharmthera.2003.11.001

    Article  PubMed  Google Scholar 

  13. Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HHHW, Stasch J-P (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5(9):755–768. doi:10.1038/nrd2038

    Article  PubMed  CAS  Google Scholar 

  14. Favaloro JL, Kemp-Harper BK (2007) The nitroxyl anion (HNO) is a potent dilator of rat coronary vasculature. Cardiovasc Res 73(3):587–596. doi:10.1016/j.cardiores.2006.11.018

    Article  PubMed  CAS  Google Scholar 

  15. Gorbe A, Giricz Z, Szunyog A, Csont T, Burley DS, Baxter GF, Ferdinandy P (2010) Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res Cardiol 105(5):643–650. doi:10.1007/s00395-010-0097-0

    Article  PubMed  CAS  Google Scholar 

  16. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96(20):11507–11512. doi:10.1073/pnas.96.20.11507

    Article  PubMed  CAS  Google Scholar 

  17. Hamid SA, Totzeck M, Drexhage C, Thompson I, Fowkes RC, Rassaf T, Baxter GF (2010) Nitric oxide/cGMP signaling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol 105(2):257–266. doi:10.1007/s00395-009-0058-7

    Article  PubMed  CAS  Google Scholar 

  18. Hausenloy D, Wynne A, Yellon D (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102(5):445–452. doi:10.1007/s00395-007-0656-1

    Article  PubMed  CAS  Google Scholar 

  19. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105(6):677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  20. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103(10):1120–1127. doi:10.1161/circresaha.108.186015

    Article  PubMed  CAS  Google Scholar 

  21. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118(19):1915–1919. doi:10.1161/circulationaha.108.805242

    Article  PubMed  Google Scholar 

  22. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87(2):146–152

    PubMed  CAS  Google Scholar 

  23. Hoenicka M, Becker EM, Apeler H, Sirichoke T, Schroder H, Gerzer R, Stasch JP (1999) Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide. J Mol Med 77(1):14–23. doi:10.1007/s001090050292

    Article  PubMed  CAS  Google Scholar 

  24. Ichinose F, Buys ES, Neilan TG, Furutani EM, Morgan JG, Jassal DS, Graveline AR, Searles RJ, Lim CC, Kaneki M, Picard MH, Scherrer-Crosbie M, Janssens S, Liao R, Bloch KD (2007) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res 100(1):130–139. doi:10.1161/01.res.0000253888.09574.7a

    Article  PubMed  CAS  Google Scholar 

  25. Klaiber M, Kruse M, Volker K, Schroter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Londono JE, Baba HA, Abramowitz J, Birnbaumer L, Penninger JM, Pongs O, Kuhn M (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 105(5):583–595. doi:10.1007/s00395-010-0098-z

    Article  PubMed  CAS  Google Scholar 

  26. Koglin M, Stasch JP, Behrends S (2002) BAY 41–2272 activates two isoforms of nitric oxide-sensitive guanylyl cyclase. Biochem Biophys Res Commun 292(4):1057–1062. doi:10.1006/bbrc.2002.6764

    Article  PubMed  CAS  Google Scholar 

  27. Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41(3):514–523. doi:10.1016/S0008-6363(98)00314-9

    Article  PubMed  CAS  Google Scholar 

  28. Korkmaz S, Radovits T, Barnucz E, Hirschberg K, Neugebauer P, Loganathan S, Veres G, Pali S, Seidel B, Zollner S, Karck M, Szabo G (2009) Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury. Circulation 120(8):677–686. doi:10.1161/circulationaha.109.870774

    Article  PubMed  CAS  Google Scholar 

  29. Krieg T, Liu Y, Rutz T, Methner C, Yang XM, Dost T, Felix SB, Stasch JP, Cohen MV, Downey JM (2009) BAY 58–2667, a nitric oxide-independent guanylyl cyclase activator, pharmacologically post-conditions rabbit and rat hearts. Eur Heart J 30(13):1607–1613. doi:10.1093/eurheartj/ehp143

    Article  PubMed  CAS  Google Scholar 

  30. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(Pt 2):457–467. doi:10.1113/jphysiol.2001.014126

    Article  PubMed  CAS  Google Scholar 

  31. Leineweber K, Bohm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation 114(5):365–367. doi:10.1161/circulationaha.106.642132

    Article  PubMed  Google Scholar 

  32. Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88(3):1264–1272

    PubMed  CAS  Google Scholar 

  33. Mergia E, Russwurm M, Zoidl G, Koesling D (2003) Major occurrence of the new alpha(2)beta(1) isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal 15(2):189–195. doi:10.1016/S0898-6568(02)00078-5

    Article  PubMed  CAS  Google Scholar 

  34. Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98(2):226–234. doi:10.1161/01.res.0000200178.34179.93

    Article  PubMed  CAS  Google Scholar 

  35. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88(2):581–609. doi:10.1152/physrev.00024.2007

    Article  PubMed  CAS  Google Scholar 

  36. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    PubMed  CAS  Google Scholar 

  37. Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, Zapol WM (2008) Brief periods of nitric oxide inhalation protect against myocardial ischemia–reperfusion injury. Anesthesiology 109(4):675–682. doi:10.1097/aln.0b013e318186316e

    Article  PubMed  CAS  Google Scholar 

  38. Oldenburg O, Qin Q, Krieg T, Yang X-M, Philipp S, Critz SD, Cohen MV, Downey JM (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 286(1):H468–H476. doi:10.1152/ajpheart.00360.2003

    Article  PubMed  CAS  Google Scholar 

  39. Oppermann M, Suvorava T, Freudenberger T, Dao VT, Fischer JW, Weber M, Kojda G (2011) Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification. Basic Res Cardiol. doi:10.1007/s00395-011-0160-5

  40. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87(3):406–423. doi:10.1093/cvr/cvq129

    Article  PubMed  CAS  Google Scholar 

  41. Patel HH, Hamuro LL, Chun BJ, Kawaraguchi Y, Quick A, Rebolledo B, Pennypacker J, Thurston J, Rodriguez-Pinto N, Self C, Olson G, Insel PA, Giles WR, Taylor SS, Roth DM (2010) Disruption of protein kinase A localization using a trans-activator of transcription (TAT)-conjugated A-kinase-anchoring peptide reduces cardiac function. J Biol Chem 285(36):27632–27640. doi:10.1074/jbc.M110.146589

    Article  PubMed  CAS  Google Scholar 

  42. Pellegrino D, Shiva S, Angelone T, Gladwin MT, Tota B (2009) Nitrite exerts potent negative inotropy in the isolated heart via eNOS-independent nitric oxide generation and cGMP-PKG pathway activation. Biochim Biophys Acta 1787(7):818–827. doi:10.1016/j.bbabio.2009.02.007

    Article  PubMed  CAS  Google Scholar 

  43. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101(2):168–179. doi:10.1007/s00395-005-0543-6

    Article  PubMed  CAS  Google Scholar 

  44. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101(2):180–189. doi:10.1007/s00395-006-0584-5

    Article  PubMed  CAS  Google Scholar 

  45. Qin Q, Yang X-M, Cui L, Critz SD, Cohen MV, Browner NC, Lincoln TM, Downey JM (2004) Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am J Physiol Heart Circ Physiol 287(2):H712–H718. doi:10.1152/ajpheart.00954.2003

    Article  PubMed  CAS  Google Scholar 

  46. Russwurm M, Behrends S, Harteneck C, Koesling D (1998) Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 335(Pt 1):125–130

    PubMed  CAS  Google Scholar 

  47. Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. EMBO J 23(22):4443–4450. doi:10.1038/sj.emboj.7600422

    Article  PubMed  CAS  Google Scholar 

  48. Schroeder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC (2003) Single L-type Ca2+ channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60(2):268–277. doi:10.1016/s0008-6363(03)00546-7

    Article  Google Scholar 

  49. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61(3):402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  PubMed  CAS  Google Scholar 

  50. Su J, Scholz PM, Weiss HR (2005) Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes. Exp Biol Med (Maywood) 230(4):242–250

    CAS  Google Scholar 

  51. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101(11):1155–1163. doi:10.1161/circresaha.107.155879

    Article  PubMed  CAS  Google Scholar 

  52. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, Moens AL, Champion HC, Kass DA (2007) Compartmentalization of cardiac {beta}-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115(16):2159–2167. doi:10.1161/circulationaha.106.643536

    Article  PubMed  CAS  Google Scholar 

  53. Talukder MAH, Yang F, Shimokawa H, Zweier JL (2010) eNOS is required for acute in vivo ischemic preconditioning of the heart: effects of ischemic duration and sex. Am J Physiol Heart Circ Physiol 299(2):H437–H445. doi:10.1152/ajpheart.00384.2010

    Article  PubMed  CAS  Google Scholar 

  54. Wegener JW, Nawrath H, Wolfsgruber W, Kuhbandner S, Werner C, Hofmann F, Feil R (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90(1):18–20. doi:10.1161/hh0102.103222

    Article  PubMed  CAS  Google Scholar 

  55. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Bolli R (2007) Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription 1/3 pathway. Circulation 116(5):535–544. doi:10.1161/circulationaha.107.689471

    Article  PubMed  CAS  Google Scholar 

  56. Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO (2007) Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res 101(5):465–474. doi:10.1161/circresaha.107.156976

    Article  PubMed  CAS  Google Scholar 

  57. Yang X-M, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100(1):57–63. doi:10.1007/s00395-004-0498-4

    Article  PubMed  CAS  Google Scholar 

  58. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83(4):1113–1151. doi:10.1152/physrev.00009.2003

    PubMed  CAS  Google Scholar 

  59. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135. doi:10.1056/NEJMra071667

    Article  PubMed  CAS  Google Scholar 

  60. Zaccolo M (2006) Phosphodiesterases and compartmentalized cAMP signaling in the heart. Eur J Cell Biol 85(7):693–697. doi:10.1016/j.ejcb.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  61. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588. doi:10.1152/ajpheart.01064.2002

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Resuscitation Fellowship Award from the American Heart Association and Philips (P.Y.Sips) and by National Institute of Health grant GM079360 (F.Ichinose). The authors would like to thank Kentaro Tokuda for technical assistance in harvesting isolated cardiomyocytes.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Sips.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sips, P.Y., Brouckaert, P. & Ichinose, F. The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning. Basic Res Cardiol 106, 635–643 (2011). https://doi.org/10.1007/s00395-011-0167-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0167-y

Keywords

Navigation