Skip to main content

Advertisement

Log in

Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Recent studies indicate that systemic administration of tumor necrosis factor (TNF)-α induces increases in corticotrophin releasing hormone (CRH) and CRH type 1 receptors in the hypothalamic paraventricular nucleus (PVN). In this study, we explored the hypothesis that CRH in the PVN contributes to sympathoexcitation via interaction with neurotransmitters in heart failure (HF). Sprague–Dawley rats with HF or sham-operated controls (SHAM) were treated for 4 weeks with a continuous bilateral PVN infusion of the selective CRH-R1 antagonist NBI-27914 or vehicle. Rats with HF had higher levels of glutamate, norepinephrine (NE) and tyrosine hydroxylase (TH), and lower levels of gamma-aminobutyric acid (GABA) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN when compared to SHAM rats. Plasma levels of cytokines, NE, ACTH and renal sympathetic nerve activity (RSNA) were increased in HF rats. Bilateral PVN infusions of NBI-27914 attenuated the decreases in PVN GABA and GAD67, and the increases in RSNA, ACTH and PVN glutamate, NE and TH observed in HF rats. These findings suggest that CRH in the PVN modulates neurotransmitters and contributes to sympathoexcitation in rats with ischemia-induced HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP:

Arterial pressure

ANOVA:

Analysis of variance

BW:

Body weight

CRH:

Corticotrophin releasing hormone

dpPVN:

Dorsal parvocellular PVN

ECD:

Electrochemical detection

EPI:

Epinephrine

ELISA:

Enzyme-linked immunosorbentassay

GABA:

Gamma-aminobutyric acid

GAD67:

67-kDa isoform of glutamate decarboxylase

GLU:

Glutamate

HF:

Heart failure

HPA:

Hypothalamo–pituitary–adrenal axis

HPLC:

High performance liquid chromatography

HR:

Heart rate

IZ:

Ischemic zone

IP:

Intraperitoneal injection

ICV:

Intracerebroventricular injection

LV:

Left ventricle

LVEF:

LV ejection fraction

LVEDV:

LV end-diastolic volume

LVEDP:

Left ventricular end-diastolic pressure

mPVN:

Magnocellular PVN

MI:

Myocardial infarction

NE:

Norepinephrine

PVN:

Hypothalamic paraventricular nucleus

PICs:

Pro-inflammatory cytokines

PGE2 :

Prostaglandin E2.

RSNA:

Renal sympathetic nerve activity

RV:

Right ventricle

SHAM:

Sham-operated control

SNP:

Sodium nitroprusside

TNF:

Tumour necrosis factor

TH:

Tyrosine hydroxylase

vlpPVN:

Ventrolateral parvocellular PVN

References

  1. Antonaccio MJ, Kerwin L, Taylor DG (1978) Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology 17:783–791. doi:10.1016/0028-3908(78)90065-5

    Article  PubMed  CAS  Google Scholar 

  2. Borkowski KR, Finch L (1978) Cardiovascular changes in anaesthetised rats after the intra-hypothalamic administration of adrenaline. Clin Exp Hypertens 1:279–291. doi:10.3109/10641967809068609

    Article  PubMed  CAS  Google Scholar 

  3. Brennan TJ, Haywood JR, Ticku MK (1983) GABA receptor binding and hemodynamic responses to ICV GABA in adult spontaneously hypertensive rats. Life Sci 33:701–709. doi:10.1016/0024-3205(83)90774-9

    Article  PubMed  CAS  Google Scholar 

  4. Buller K, Xu Y, Dayas C, Day T (2001) Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1beta-induced hypothalamic pituitary adrenal axis responses. Neuroendocrinology 73:129–138. doi:10.1159/000054629

    Article  PubMed  CAS  Google Scholar 

  5. Butcher KS, Cethetto DF (1998) Receptors in lateral hypothalamic area involved in insular cortex sympathetic responses. Am J Physiol 275:H689–H696. doi:0363-6135/98

    PubMed  CAS  Google Scholar 

  6. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:79–89. doi:10.1007/s00395-008-0749-5

    Article  Google Scholar 

  7. Chen QH, Haywood JR, Toney GM (2003) Sympathoexcitation by PVN injected bicuculline requires activation of excitatory amino acid receptors. Hypertension 42:725–731. doi:10.1161/01.HYP.0000085197.20043.44

    Article  PubMed  CAS  Google Scholar 

  8. Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N (2010) FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313. doi:10.1007/s00395-009-0046-y

    Article  PubMed  CAS  Google Scholar 

  9. Chrousos GP (2000) The stress response and immune function: clinical implications. The 1999 Novera H. Spector Lecture. Ann NY Acad Sci 917:38–67. doi:10.1111/j.1749-6632.2000.tb05371.x

  10. Cole RL, Sawchenko PE (2002) Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 22:959–969. doi:0270-6474/02/220959-11

    PubMed  CAS  Google Scholar 

  11. Dampney RAL (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364. doi:0031-9333/94

    PubMed  CAS  Google Scholar 

  12. Dunn AJ (2000) Cytokine activation of the HPA axis. Ann NY Acad Sci 917:608–617. doi:10.1111/j.1749-6632.2000.tb05426.x

    Article  PubMed  CAS  Google Scholar 

  13. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638. doi:0031-6997/00/5204-0595

    PubMed  CAS  Google Scholar 

  14. Francis J, Beltz T, Johnson AK, Felder RB (2003) Mineralocorticoids act centrally to regulate blood-borne tumor necrosis factor-α in normal rats. Am J Physiol Regul Integr Comp Physiol 285:R1402–R1409. doi:10.1152/ajpregu.00027.2003

    PubMed  CAS  Google Scholar 

  15. Francis J, Mohan Kumar SM, Mohan Kumar PS (2000) Correlations of norepinephrine release in the paraventricular nucleus with plasma corticosterone and leptin after systemic lipopolysaccharide: blockade by soluble IL-1 receptor. Brain Res 867:180–187. doi:10.1016/S0006-8993(00)02311-8

    Article  PubMed  CAS  Google Scholar 

  16. Francis J, Chu Yi, Johnson KA, Weiss RM, Felder RB (2004) Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol 286:H2264–H2271. doi:10.1152/ajpheart.01072.2003

    Article  PubMed  CAS  Google Scholar 

  17. Guggilam A, Haque M, Kerut EK, McIlwain E, Lucchesi P, Seghal I, Francis J (2007) TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol Heart Circ Physiol 293:H599–H609. doi:10.1152/ajpheart.00286.2007

    Article  PubMed  CAS  Google Scholar 

  18. Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J (2008) Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail 10:625–634. doi:10.1016/j.ejheart.2008.05.004

    Article  PubMed  CAS  Google Scholar 

  19. Guillaume V, Conte-Devolx B, Szafarczyk A, Malaval F, Pares-Herbute N, Grino M, Alonso G, Assenmacher I, Oliver C (1987) The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology 46:143–146. doi:10.1159/000124811

    Article  PubMed  CAS  Google Scholar 

  20. Imaki T, Naruse M, Harada S, Chikada N, Imaki J, Onodera H, Demura H, Vale W (1996) Corticotropin-releasing factor up-regulates its own receptor mRNA in the paraventricular nucleus of the hypothalamus. Brain Res Mol Brain Res 38:166–170. doi:10.1016/0169-328X(96)00011-3

    Article  PubMed  CAS  Google Scholar 

  21. Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. doi:10.1093/cvr/cvp160

    Article  PubMed  CAS  Google Scholar 

  22. Kang YM, Ma Y, Elks C, Zheng JP, Yang ZM, Francis J (2008) Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: role of nuclear factor-κB. Cardiovasc Res 79:671–678. doi:10.1093/cvr/cvn119

    Article  PubMed  CAS  Google Scholar 

  23. Kang YM, Ma Y, Zheng JP, Elks C, Sriramula S, Yang ZM, Francis J (2009) Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res 82:503–512. doi:10.1093/cvr/cvp073

    PubMed  CAS  Google Scholar 

  24. Kang YM, Zhang ZH, Johnson RF, Yu Y, Beltz T, Johnson AK, Weiss RM, Felder RB (2006) Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res 99:758–766. doi:10.1161/01.RES.0000244092.95152.86

    Article  PubMed  CAS  Google Scholar 

  25. Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB (2008) Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 295:H227–H236. doi:10.1152/ajpheart.01157.2007

    Article  PubMed  CAS  Google Scholar 

  26. Kleinbongard P, Heusch G, Schulz R (2010) TNF-alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  27. Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751–762. doi:10.1007/s00395-010-0113-4

    Article  PubMed  CAS  Google Scholar 

  28. Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2010) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105:139–150. doi:10.1007/s00395-009-0067-6

    Article  PubMed  CAS  Google Scholar 

  29. Luo X, Kiss A, Makara G, Lolait SJ, Aguilera G (1994) Stress-specific regulation of corticotropin releasing hormone receptor expression in the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Neuroendocrinol 6:689–696. doi:10.1111/j.1365-2826.1994.tb00636.x

    Article  PubMed  CAS  Google Scholar 

  30. Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alloatti G, Montrucchio G (2010) Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 105:609–620. doi:10.1007/s00395-010-0103-6

    Article  PubMed  Google Scholar 

  31. Mann DL (1996) Stress activated cytokines and the heart. Cytokine Growth Factor Rev 7:341–354. doi:10.1016/S1359-6101(96)00043-3

    Article  PubMed  CAS  Google Scholar 

  32. Mansi JA, Rivest S, Drolet G (1996) Regulation of corticotropin-releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF. Endocrinology 137:4619–4629. doi:10.1210/en.137.11.4619

    Article  PubMed  CAS  Google Scholar 

  33. McCann SM, Kimura M, Karanth S, Yu WH, Mastronardi CA, Rettori V (2000) The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann N Y Acad Sci 917:4–18. doi:10.1111/j.1749-6632.2000.tb05368.x

    Article  PubMed  CAS  Google Scholar 

  34. Miyawaki T, Minson J, Arnolda L, Chalmers J (1996) Role of excitatory amino acid receptors in cardiorespiratory coupling in ventrolateral medulla. Am J Physiol 271:R1221–R1230. doi:0363-6119/96

    PubMed  CAS  Google Scholar 

  35. Nagura S, Sakagami T, Kakiichi A, Yoshimoto M, Miki K (2004) Acute shifts in baroreflex control of renal sympathetic nerve activity induced by REM sleep and grooming in rats. J Physiol 558:975–983. doi:10.1113/jphysiol.2004.064527

    Article  PubMed  CAS  Google Scholar 

  36. Paxinos G, Watson C (1987) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

  37. Plotsky PM, Cunningham ET Jr, Widmaier EP (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 10:437–458. doi:10.1210/edrv-10-4-437

    Article  PubMed  CAS  Google Scholar 

  38. Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223:22–38. doi:10.1111/j.1525-1373.2000.22304.x

    Article  PubMed  CAS  Google Scholar 

  39. Rivest S, Laflamme N, Nappi RE (1995) Immune challenge and immobilization stress induce transcription of the gene encoding the CRH receptor in selective nuclei of the rat hypothalamus. J Neurosci 15:2680–2695. doi:0270-6474/95/152680-16

    PubMed  CAS  Google Scholar 

  40. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312. doi:10.1016/0006-8993(76)90738-1

    Article  PubMed  CAS  Google Scholar 

  41. Sawchenko PE, Imaki T, Potter E, Kovacs K, Imaki J, Vale W (1993) The functional neuroanatomy of corticotropin-releasing factor. Ciba Found Symp 172:5–21. doi:10.1002/9780470514368.ch2

    PubMed  CAS  Google Scholar 

  42. Smagin GN, Swiergiel AH, Dunn AJ (1996) Peripheral administration of interleukin-1 increases extracellular concentrations of norepinephrine in rat hypothalamus: comparison with plasma corticosterone. Psychoneuroendocrinology 21:83–93. doi:10.1016/0306-4530(95)00019-4

    Article  PubMed  CAS  Google Scholar 

  43. Sriramula S, Haque M, Majid DS, Francis J (2008) Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51:1345–1351. doi:10.1161/HYPERTENSIONAHA.107.102152

    Article  PubMed  CAS  Google Scholar 

  44. Strack AM, Sawyer WB, Platt KB, Loewy AD (1989) CNS cell groups regulating the sympathetic outflow to the adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 491:274–296. doi:10.1016/0006-8993(89)90063-2

    Article  PubMed  CAS  Google Scholar 

  45. Sun AY, Li DX (1994) Cardiovascular responses to intracerebroventricular injection of GABA in renovascular hypertensive rats. Zhongguo Yao Li Xue Bao 15:136–138. doi:cnki:ISSN:0253-9756.0.1994-02-009

    PubMed  CAS  Google Scholar 

  46. Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31:410–417. doi:10.1159/000123111

    Article  PubMed  CAS  Google Scholar 

  47. Swedberg K, Bergh CH, Dickstein K, McNay J, Steinberg M (2000) The effects of moxonidine, a novel imidazoline, on plasma norepinephrine in patients with congestive heart failure. Moxonidine Investigators. J Am Coll Cardiol 35:398–404. doi:10.1016/S0735-1097(99)00565-3

    Google Scholar 

  48. Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I (1987) Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology 121:883–892. doi:10.1210/endo-121-3-883

    Article  PubMed  CAS  Google Scholar 

  49. Turnbull AV, Rivier CL (1999) Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 79:1–71. doi:0031-9333/99

    PubMed  CAS  Google Scholar 

  50. Van Kerckhoven R, van Veen TAB, Boomsma F, Saxena PR, Schoemaker RG (2000) Chronic administration of moxonidine suppresses sympathetic activation in a rat heart failure model. Eur J Pharmacol 397:113–120. doi:10.1016/S0014-2999(00)00232-6

    Article  PubMed  Google Scholar 

  51. Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464. doi:10.1007/s00395-010-0083-6

    Article  PubMed  CAS  Google Scholar 

  52. Zhang K, Li YF, Patel KP (2002) Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. Am J Physiol Regul Lntegr Comp Physiol 282:R1006–R1015. doi:10.1152/ajpregu.00241.2001

    CAS  Google Scholar 

  53. Zhang ZH, Felder RB (2008) Hypothalamic corticotrophin-releasing factor and norepinephrine mediate sympathetic and cardiovascular responses to acute intracarotid injection of tumour necrosis factor-alpha in the rat. J Neuroendocrinol 20:978–987. doi:10.1111/j.1365-2826.2008.01750.x

    Article  PubMed  CAS  Google Scholar 

  54. Zhang ZH, Wei SG, Francis J, Felder RB (2003) Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol 284:R916–R927. doi:10.1152/ajpregu.00406.2002

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding: Supported by National Natural Science Foundation of China (No. 81070199), US National Institutes of Health (NIH) Grant RO1-HL-080544-01, and Fundamental Research Funds for the Central Universities of China (No. 08142001).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ming Kang or Joseph Francis.

Additional information

Y.-M. Kang, A.-Q. Zhang and X.-F. Zhao contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YM., Zhang, AQ., Zhao, XF. et al. Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Res Cardiol 106, 473–483 (2011). https://doi.org/10.1007/s00395-011-0155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0155-2

Keywords

Navigation