Skip to main content

Advertisement

Log in

NO and PGI2 in coronary endothelial dysfunction in transgenic mice with dilated cardiomyopathy

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

The aim of the present work was to analyze coronary endothelial function in the transgenic mouse model of dilated cardiomyopathy (Tgαq*44 mice).

Methods

Coronary vasodilatation, both NO-dependent (induced by bradykinin) and PGI2-dependent (induced by acetylcholine), was assessed in the isolated hearts of Tgαq*44 and FVB mice. Cardiac function was analyzed in vivo (MRI).

Results

In Tgαq*44 mice at the age of 2–4 months cardiac function was preserved and there were no alterations in endothelial function. By contrast, in Tgαq*44 mice at the age of 14–16 months cardiac function was significantly impaired and NO, but not PGI2-dependent coronary function was altered. Interestingly, the basal level of PGI2 in coronary circulation increased fourfold as compared to FVB mice. Cardiac O2 production increased 1.5-fold and 3-fold in Tgαq*44 vs. FVB mice at the age of 2–6 and 14–16 months, respectively, and was inhibited by apocynin. Interestingly, inhibition of NADPH oxidase or NOS-3 normalized augmented PGI2 production in Tgαq*44 mice. There was also an increased expression of gp91phox in Tgαq*44 vs. FVB hearts, without evident alterations in the expression of COX-1, COX-2, NOS-3 and PGI2-synthase.

Conclusions

In the mouse model of dilated cardiomyopathy, endothelial dysfunction in coronary circulation is present in the late but not the early stage of heart failure pathology and is characterized by a decrease in NO bioavailability and a compensatory increase in PGI2. Both the decrease in NO activity and the increase in PGI2 activity may result from excessive O2 production by cardiac NADPH oxidase in Tgαq*44 hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aubin MC, Gendron ME, Lebel V, Thorin E, Tardif JC, Carrier M, Perrault LP (2007) Alterations in the endothelial G-protein coupled receptor pathway in epicardial arteries and subendocardial arterioles in compensated left ventricular hypertrophy. Basic Res Cardiol 102:144–153

    Article  PubMed  CAS  Google Scholar 

  2. Bauersachs J, Schafer A (2004) Endothelial dysfunction in heart failure: mechanisms and therapeutic approaches. Curr Vasc Pharmacol 2:115–124

    Article  PubMed  CAS  Google Scholar 

  3. Bell JP, Mosfer SI, Lang D, Donaldson F, Lewis MJ (2001) Vitamin C and quinapril abrogate LVH and endothelial dysfunction in aortic-banded guinea pigs. Am J Physiol Heart Circ Physiol 281:H1704–H1710

    PubMed  CAS  Google Scholar 

  4. Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM (1997) Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest 100:2189–2195

    Article  PubMed  CAS  Google Scholar 

  5. Chlopicki S, Kozlovski VI, Lorkowska B, Drelicharz L, Gebska A (2005) Compensation of endothelium-dependent responses in coronary circulation of eNOS-deficient mice. J Cardiovasc Pharmacol 46:115–123

    Article  PubMed  CAS  Google Scholar 

  6. Colombo PC, Banchs JE, Celaj S, Talreja A, Lachmann J, Malla S, DuBois NB, Ashton AW, Latif F, Jorde UP, Ware JA, LeJemtel TH (2005) Endothelial cell activation in patients with decompensated heart failure. Circulation 111:58–62

    Article  PubMed  CAS  Google Scholar 

  7. D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94:8121–8126

    Article  PubMed  CAS  Google Scholar 

  8. Delgado RM III, Nawar MA, Zewail AM, Kar B, Vaughn WK, Wu KK, Aleksic N, Sivasubramanian N, McKay K, Mann DL, Willerson JT (2004) Cyclooxygenase-2 inhibitor treatment improves left ventricular function and mortality in a murine model of doxorubicin-induced heart failure. Circulation 109:1428–1433

    Article  PubMed  CAS  Google Scholar 

  9. Dowd NP, Scully M, Adderley SR, Cunningham AJ, Fitzgerald DJ (2001) Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest 108:585–590

    PubMed  CAS  Google Scholar 

  10. Ermert L, Ermert M, Goppelt-Struebe M, Walmrath D, Grimminger F, Steudel W, Ghofrani HA, Homberger C, Duncker H, Seeger W (1998) Cyclooxygenase isoenzyme localization and mRNA expression in rat lungs. Am J Respir Cell Mol Biol 18:479–488

    PubMed  CAS  Google Scholar 

  11. FitzGerald GA, Smith B, Pedersen AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 310:1065–1068

    PubMed  CAS  Google Scholar 

  12. Flood A, Headrick JP (2001) Functional characterization of coronary vascular adenosine receptors in the mouse. Br J Pharmacol 133:1063–1072

    Article  PubMed  CAS  Google Scholar 

  13. Godecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204

    Article  PubMed  CAS  Google Scholar 

  14. Godecke A, Ziegler M, Ding Z, Schrader J (2002) Endothelial dysfunction of coronary resistance vessels in apoE−/− mice involves NO but not prostacyclin-dependent mechanisms. Cardiovasc Res 53:253–262

    Article  PubMed  CAS  Google Scholar 

  15. Godecke A, Decking UKM, Ding Z, Hirchenhain J, Bidmon HJ, Godecke S, Schrader J (1998) Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 82:186–194

    PubMed  CAS  Google Scholar 

  16. Greenberg SS, Ouyang J, Zhao X, Giles TD (1998) Human and rat neutrophils constitutively express neural nitric oxide synthase mRNA. Nitric Oxide 2:203–212

    Article  PubMed  CAS  Google Scholar 

  17. Gwozdz P, Drelicharz L, Kozlovski VI, Chlopicki S (2007) Prostacyclin, but not NO, is the major mediator of acetylcholine-induced vasodilatation in the isolated mice heart. Pharmacol Rep 59:545–552

    PubMed  CAS  Google Scholar 

  18. Hecker G, Utz J, Kupferschmidt RJ, Ullrich V (1991) Low levels of hydrogen peroxide enhance platelet aggregation by cyclooxygenase activation. Eicosanoids 4:107–113

    PubMed  CAS  Google Scholar 

  19. Heinze-Paluchowska S, Skorka T, Drelicharz L, Chlopicki S, Jasiński A (2006) MR imaging of mouse heart in vivo using a specialized probehead and gradient system. Pol J Chem 80:1133–1139

    CAS  Google Scholar 

  20. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    Article  PubMed  CAS  Google Scholar 

  21. Jacoby C, Molojavyi A, Flogel U, Merx MW, Ding Z, Schrader J (2006) Direct comparison of magnetic resonance imaging and conductance microcatheter in the evaluation of left ventricular function in mice. Basic Res Cardiol 101:87–95

    Article  PubMed  Google Scholar 

  22. Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP (2004) gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109:1795–1801

    Article  PubMed  CAS  Google Scholar 

  23. Kanzaki H, Nakatani S, Yamada N, Urayama S, Miyatake K, Kitakaze M (2006) Impaired systolic torsion in dilated cardiomyopathy: reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res Cardiol 101:465–470

    Article  PubMed  Google Scholar 

  24. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A (2005) Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111:310–314

    Article  PubMed  Google Scholar 

  25. Khush KK, Waters DD (2006) Effects of statin therapy on the development and progression of heart failure: mechanisms and clinical trials. J Card Fail 12:664–674

    Article  PubMed  CAS  Google Scholar 

  26. Kulmacz RJ, Wang LH (1995) Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2. J Biol Chem 270:24019–24023

    Article  PubMed  CAS  Google Scholar 

  27. Kuroedov A, Cosentino F, Luscher TF (2004) Pharmacological mechanisms of clinically favorable properties of a selective beta1-adrenoceptor antagonist, nebivolol. Cardiovasc Drug Rev 22:155–168

    PubMed  CAS  Google Scholar 

  28. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19:4293

    Article  PubMed  CAS  Google Scholar 

  29. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273:2015–2023

    Article  PubMed  CAS  Google Scholar 

  31. Linke A, Recchia F, Zhang X, Hintze TH (2003) Acute and chronic endothelial dysfunction: implications for the development of heart failure. Heart Fail Rev 8:87–97

    Article  PubMed  CAS  Google Scholar 

  32. Lygate CA, Schneider JE, Hulbert K, ten HM, Sebag-Montefiore LM, Cassidy PJ, Clarke K, Neubauer S (2006) Serial high resolution 3D-MRI after aortic banding in mice: band internalization is a source of variability in the hypertrophic response. Basic Res Cardiol 101:8–16

    Article  PubMed  Google Scholar 

  33. MacCarthy PA, Shah AM (2003) Oxidative stress and heart failure. Coron Artery Dis 14:109–113

    Article  PubMed  Google Scholar 

  34. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ (1998) Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 95:13893–13898

    Article  PubMed  CAS  Google Scholar 

  35. Mende U, Semsarian C, Martins DC, Kagen A, Duffy C, Schoen FJ, Neer EJ (2001) Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein alpha(q): lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol 33:1477–1491

    Article  PubMed  CAS  Google Scholar 

  36. Munzel T, Harrison DG (1999) Increased superoxide in heart failure: a biochemical baroreflex gone awry. Circulation 100:216–218

    PubMed  CAS  Google Scholar 

  37. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101:168–179

    Article  PubMed  CAS  Google Scholar 

  38. Pratico D, Cyrus T, Li H, FitzGerald GA (2000) Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis. Blood 96:3823–3826

    PubMed  CAS  Google Scholar 

  39. Rebsamen MC, Capoccia R, Vallotton MB, Lang U (2003) Role of cyclooxygenase 2, p38 and p42/44 MAPK in the secretion of prostacyclin induced by epidermal growth factor, endothelin-1 and angiotensin II in rat ventricular cardiomyocytes. J Mol Cell Cardiol 35:81–89

    Article  PubMed  CAS  Google Scholar 

  40. Saito T, Giaid A (1999) Cyclooxygenase-2 and nuclear factor-kappaB in myocardium of end stage human heart failure. Congest Heart Fail 5:222–227

    PubMed  CAS  Google Scholar 

  41. Saito T, Maehara K, Tamagawa K, Oikawa Y, Niitsuma T, Saitoh S, Maruyama Y (2002) Alterations of endothelium-dependent and -independent regulation of coronary blood flow during heart failure. Am J Physiol Heart Circ Physiol 282:H80–H86

    PubMed  CAS  Google Scholar 

  42. Schildknecht S, Bachschmid M, Ullrich V (2005) Peroxynitrite provides the peroxide tone for PGHS-2-dependent prostacyclin synthesis in vascular smooth muscle cells. FASEB J 19:1169–1171

    PubMed  CAS  Google Scholar 

  43. Shah DJ, Judd RM, Kim RJ (2005) Technology insight: MRI of the myocardium. Nat Clin Pract Cardiovasc Med 2:597–605

    Article  PubMed  Google Scholar 

  44. Shizukuda Y, Buttrick PM (2002) Oxygen free radicals and heart failure: new insight into an old question. Am J Physiol Lung Cell Mol Physiol 283:L237–L238

    PubMed  CAS  Google Scholar 

  45. Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, Xu XB, Kobari Y, Pritchard K Jr, Sessa WC, Hintze TH (1996) Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 78:58–64

    PubMed  CAS  Google Scholar 

  46. Tanner FC, van der Loo B, Shaw S, Greutert H, Bachschmid MM, Berrozpe M, Rozenberg I, Blau N, Siebenmann R, Schmidli J, Meyer P, Luscher TF (2007) Inactivity of nitric oxide synthase gene in the atherosclerotic human carotid artery. Basic Res Cardiol 102:308–317

    Article  PubMed  CAS  Google Scholar 

  47. Tentolouris C, Tousoulis D, Antoniades C, Bosinakou E, Kotsopoulou M, Trikas A, Toutouzas P, Stefanadis C (2004) Endothelial function and proinflammatory cytokines in patients with ischemic heart disease and dilated cardiomyopathy. Int J Cardiol 94:301–305

    Article  PubMed  Google Scholar 

  48. Uracz W, Gebska A, Ziemianin B, Chlopicki S, Gryglewski RJ (1998) Role of nitric oxide synthase types II and III in early protection against endotoxin-induced lung injury. Exp Clin Cardiol 3:78–86

    Google Scholar 

  49. Wiesmann F, Ruff J, Engelhardt S, Hein L, Dienesch C, Leupold A, Illinger R, Frydrychowicz A, Hiller KH, Rommel E, Haase A, Lohse MJ, Neubauer S (2001) Dobutamine-stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circ Res 88:563–569

    PubMed  CAS  Google Scholar 

  50. Wong SCY, Fukuchi M, Melnyk P, Rodger I, Giaid A (1998) Induction of cyclooxygenase-2 and activation of nuclear factor-{kappa}B in myocardium of patients with congestive heart failure. Circulation 98:100–103

    PubMed  CAS  Google Scholar 

  51. Wu KK (1998) Cyclooxygenase-2 induction in congestive heart failure: friend or foe? Circulation 98:95–96

    PubMed  CAS  Google Scholar 

  52. Yu H, Gallagher AM, Garfin PM, Printz MP (1997) Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression. Hypertension 30:1047–1053

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish Ministry of Science and Higher Education (grant no. K/PBW/000077) and by a professorial grant from the Foundation for Polish Science to Stefan Chlopicki. We thank Anna Kowalczyk and Anna Obrusnik for their excellent support with the breeding of the Tgαq*44 animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Chlopicki.

Additional information

Returned for 1. Revision: 24 September 2007 1. Revision received: 12 November 2007

Returned for 2. Revision: 19 December 2007 2. Revision received: 5 February 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drelicharz, L., Kozlovski, V., Skorka, T. et al. NO and PGI2 in coronary endothelial dysfunction in transgenic mice with dilated cardiomyopathy. Basic Res Cardiol 103, 417–430 (2008). https://doi.org/10.1007/s00395-008-0723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0723-2

Keywords

Navigation