Skip to main content

Advertisement

Log in

Transgenic upregulation of IK1 in the mouse heart is proarrhythmic

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

An Erratum to this article was published on 05 June 2007

Abstract

The role of the cardiac current Ik1 in arrhythmogenesis remains highly controversal. To gain further insights into the mechanisms of IK1 involvement in cardiac excitability, we studied the susceptibility of transgenic mice with altered IK1 to arrhythmia during various pharmacological and physiological challenges.Arrhythmogenesis was studied in transgenic mice expressing either dominant negative Kir2.1-AAA or wild type Kir2.1 subunits in the heart, models of IK1 suppression (AAA-TG) and up-regulation (WT-TG), respectively. Under normal conditions, both anesthetized wild type (WT) and AAA-TG mice did not display any spontaneous arrhythmias. In contrast,WT-TG mice displayed numerous arrhythmias of various types. In isolated hearts, the threshold concentration for halothane-induced ventricular tachycardias (VT) was increased to 170 % in the AAA-TG and decreased to 55 % in WT-TG hearts when compared to WT hearts. The number of PVCs induced by AV node ablation combined with hypokalemia was reduced in AAA-TG hearts and increased in WT-TG mice.After AV node ablation AAA-TG hearts were more tolerant, and WT-TG less tolerant to isoproterenol- induced arrhythmias than WT hearts. Analysis of monophasic action potentials in isolated hearts shows a significant reduction in the dispersion of action potential repolarization in mice with suppressed IK1. The data strongly support the hypothesis that in the mouse heart upregulation of IK1 is proarrhythmic, and that under certain conditions IK1 blockade in cardiac myocytes may be a potentially useful antiarrhythmic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antzelevitch C (2005) Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm 2:S9–S15

    Article  PubMed  Google Scholar 

  2. Antzelevitch C, Fish J (2001) Electrical heterogeneity within the ventricular wall. Basic Res Cardiol 96:517–527

    Article  PubMed  CAS  Google Scholar 

  3. Asano Y, Davidenko JM, Baxter WT, Gray RA, Jalife J (1997) Optical mapping of drug-induced polymorphic arrhythmias and torsade de pointes in the isolated rabbit heart. J Am Coll Cardiol 29:831–842

    Article  PubMed  CAS  Google Scholar 

  4. Baker LC, London B, Choi BR, Koren G, Salama G (2000) Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circ Res 86:396–407

    PubMed  CAS  Google Scholar 

  5. Brachmann J, Scherlag BJ, Rosenshtraukh LV, Lazzara R (1983) Bradycardia- dependent triggered activity: relevance to drug-induced multiform ventricular tachycardia. Circulation 68:846–856

    PubMed  CAS  Google Scholar 

  6. Brooksby P,Levi AJ, Jones JV (1993) The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hypertens 11:611–622

    Article  PubMed  CAS  Google Scholar 

  7. Brunet S, Aimond F, Guo W, Li H, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM (2004) Heterogeneous Expression of Repolarizing,Voltage-Gated K+ Currents in Adult Mouse Ventricles. J Physiol 559(Pt 1):103–120

    Article  PubMed  CAS  Google Scholar 

  8. Chaves AA, Dech SJ,Nakayama T,Hamlin RL, Bauer JA, Carnes CA (2003) Age and anesthetic effects on murine electrocardiography. Life Sci 72:2401–2412

    Article  PubMed  CAS  Google Scholar 

  9. Dobrev D,Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148

    PubMed  Google Scholar 

  10. Dobrev D,Wettwer E, Kortner A, Knaut M, Schuler S, Ravens U (2002) Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 54:397–404

    Article  PubMed  CAS  Google Scholar 

  11. Drici MD, Baker L, Plan P, Barhanin J, Romey G, Salama G (2002) Mice display sex differences in halothane-induced polymorphic ventricular tachycardia. Circulation 106:497–503

    Article  PubMed  Google Scholar 

  12. Fabritz L, Kirchhof P, Franz MR, Eckardt L, Monnig G, Milberg P, Breithardt G, Haverkamp W (2003) Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res Cardiol 98:25–32

    Article  PubMed  Google Scholar 

  13. Franz MR (1999) Current status of monophasic action potential recording: theories,measurements and interpretations. Cardiovasc Res 41:25–40

    Article  PubMed  CAS  Google Scholar 

  14. Guler N, Kati I, Demirel CB, Bilge M, Eryonucu B, Topal C (2001) The effects of volatile anesthetics on the Q-Tc interval. J Cardiothorac Vasc Anesth 15:188–191

    Article  PubMed  CAS  Google Scholar 

  15. Hirota K, Ito Y, Masuda A, Momose Y (1989) Effects of halothane on membrane ionic currents in guinea pig atrial and ventricular myocytes. Acta Anaesthesiol Scand 33:239–244

    PubMed  CAS  Google Scholar 

  16. Hogan B (1994) Manipulating the mouse embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

  17. Huang WY, Aramburu J, Douglas PS, Izumo S (2000) Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6:482–483

    Article  PubMed  CAS  Google Scholar 

  18. Huneke R, Fassl J, Rossaint R, Luckhoff A (2004) Effects of volatile anesthetics on cardiac ion channels. Acta Anaesthesiol Scand 48:547–561

    Article  PubMed  CAS  Google Scholar 

  19. Kaab S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78:262–273

    PubMed  CAS  Google Scholar 

  20. Kleiman RB,Houser SR (1989) Outward currents in normal and hypertrophied feline ventricular myocytes. Am J Physiol 256:H1450–H1461

    PubMed  CAS  Google Scholar 

  21. Knollmann BC, Katchman AN, Franz MR (2001) Monophasic action potential recordings from intact mouse heart: validation, regional heterogeneity, and relation to refractoriness. J Cardiovasc Electrophysiol 12:1286–1294

    Article  PubMed  CAS  Google Scholar 

  22. Knollmann BC, Sirenko SG, Henriquez C, Franz MR (2003) Origin of the monophasic action potential: which electrode? Pacing Clin Electrophysiol 26:996

    Google Scholar 

  23. Kondo M,Nesterenko V,Antzelevitch C (2004) Cellular basis for the monophasic action potential.Which electrode is the recording electrode? Cardiovasc Res 63:635–644

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Guo W, Xu H, Hood R, Benedict AT, Nerbonne JM (2001) Functional expression of a GFP-tagged Kv1.5 alphasubunit in mouse ventricle. Am J Physiol Heart Circ Physiol 281:H1955–H1967

    PubMed  CAS  Google Scholar 

  25. Li J, Lopatin AN (2005) Upregulation of IK1 in the mouse heart does not protect against acute metabolic challenges. Biophysical Journal (49th Annual Meeting, 2005) Part 2 Suppl. S 88:286A–286A

    Google Scholar 

  26. Li J, McLerie M, Lopatin AN (2004) Transgenic Up-Regulation of IK1 in The Mouse Heart Leads to Multiple Abnormalities of Cardiac Excitability. Am J Physiol Heart Circ Physiol 287:H2790–2802

    Article  PubMed  CAS  Google Scholar 

  27. Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260:712–717

    Article  PubMed  CAS  Google Scholar 

  28. Lopatin AN, Nichols CG (2001) Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol 33:625–638

    Article  PubMed  CAS  Google Scholar 

  29. McLerie M, Lopatin AN (2003) Dominant- negative suppression of I(K1) in the mouse heart leads to altered cardiac excitability. J Mol Cell Cardiol 35:367–378

    Article  PubMed  CAS  Google Scholar 

  30. Miake J,Marban E,Nuss HB (2002) Biological pacemaker created by gene transfer. Nature 419:132–133

    Article  PubMed  CAS  Google Scholar 

  31. Miake J, Marban E, Nuss HB (2003) Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 111:1529–1536

    Article  PubMed  CAS  Google Scholar 

  32. Noujaim SF, Persaud D, Pandit SV, Munoz V, Auerbach D, Anumonwo J, Taffet S,Vikstrom k, Jalife J (2004) Overexpression of Kir2.1 protein channels in transgenic mice reduces conduction velocity and predisposes to stable reentrant arrhythmias. Circulation 110:III– 152. Pos. 724

    Article  Google Scholar 

  33. Plaster NM,Tawil R,Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST,Brunt E, Barohn R, Clark J, Deymeer F, George AL,Fish FA,Hahn A,Nitu A,Ozdemir C, Serdaroglu P, Subramony SH,Wolfe G, Fu Y, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  PubMed  CAS  Google Scholar 

  34. Preisig-Muller R, Schlichthorl G, Goerge T,Heinen S, Bruggemann A, Rajan S, Derst C, Veh RW, Daut J (2002) Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA 21:21

    Google Scholar 

  35. Priori SG,Pandit SV,Rivolta I,Berenfeld O,Ronchetti E,Dhamoon A,Napolitano C, Anumonwo J, Raffaele di Barletta M, Gudapakkam S, Bosi G, Stramba-Badiale M, Jalife J (2005) A Novel Form of Short QT Syndrome (SQT3) Is Caused by a Mutation in the KCNJ2 Gene. Circ Res 96:703–704

    Article  CAS  Google Scholar 

  36. Satoh H, Delbridge LM, Blatter LA,Bers DM (1996) Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 70:1494–1504

    Article  PubMed  CAS  Google Scholar 

  37. Spear JF,Moore EN (2000) Modulation of arrhythmias by isoproterenol in a rabbit heart model of d-sotalol-induced long Q-T intervals. Am J Physiol Heart Circ Physiol 279:H15–H25

    PubMed  CAS  Google Scholar 

  38. Stadnicka A, Bosnjak ZJ, Kampine JP, Kwok WM (2000) Modulation of cardiac inward rectifier K(+)current by halothane and isoflurane. Anesth Analg 90:824–833

    Article  PubMed  CAS  Google Scholar 

  39. Taggart P, Sutton P, Chalabi Z, Boyett MR,Simon R,Elliott D, Gill JS (2003) Effect of adrenergic stimulation on action potential duration restitution in humans. Circulation 107:285–289

    Article  PubMed  CAS  Google Scholar 

  40. Tomaselli GF,Marban E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270–283

    Article  PubMed  CAS  Google Scholar 

  41. Tong X, Porter LM, Liu G, Dhar-Chowdhury P, Srivastava S, Pountney DJ, Yoshida H, Artman M, Fishman GI, Yu C, Iyer R, Morley GE, Gutstein DE, Coetzee WA (2006) Consequences of Cardiac Myocyte-Specific Ablation of KATP channels in Transgenic Mice expressing Dominant Negative Kir6 Subunits. Am J Physiol Heart Circ Physiol 291:H543–H551

    Article  PubMed  CAS  Google Scholar 

  42. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, Bendahhou S,Kwiecinski H, Fidzianska A, Plaster N, Fu YH, Ptacek LJ, Tawil R (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110:381–388

    Article  PubMed  CAS  Google Scholar 

  43. Van Wagoner DR (2003) Electrophysiological remodeling in human atrial fibrillation. Pacing Clin Electrophysiol 26:1572–1575

    Article  PubMed  Google Scholar 

  44. Warren M, Guha PK, Berenfeld O, Zaitsev A, Anumonwo JM, Dhamoon AS, Bagwe S,Taffet SM, Jalife J (2003) Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. J Cardiovasc Electrophysiol 14:621–631

    Article  PubMed  Google Scholar 

  45. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q,Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z,Wang R,Wan H, Qiu W,Xu W, Eurlings P, Barhanin J, Chen Y (2005) A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 332:1012–1019

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lopatin.

Additional information

This study was supported by RO1 HL69052 grant from NHBLI (AL). Part of this work was presented at the AHA Scientific Sessions 2003: Li J.,McLerie M. and Lopatin A. N. Transgenic Regulation of IK1 in the Mouse Heart Strongly Affects Drug-Induced Arrhythmias. Circulation 2003; 108(17): P. IV-87; Pos. 410.

*Both authors contributed equally to the work.

An erratum to this article is available at http://dx.doi.org/10.1007/s00395-007-0679-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao*, L., Li*, J., McLerie, M. et al. Transgenic upregulation of IK1 in the mouse heart is proarrhythmic. Basic Res Cardiol 102, 416–428 (2007). https://doi.org/10.1007/s00395-007-0659-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-007-0659-y

Key words

Navigation