Skip to main content
Log in

Influence of short–term versus prolonged cardiopulmonary receptor stimulation on renal and preganglionic adrenal sympathetic nerve activity in rats

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Renal and preganglionic adrenal sympathetic nerve activities (RSNA, ASNA) are regulated differentially. Various cardiopulmonary receptor (CPR) stimulation procedures were performed to distinguish short–term and prolonged as well as mechanical and chemical stimulatory effects on RSNA and ASNA.

In anesthetized male Sprague–Dawley rats blood pressure, heart rate, left ventricular end–diastolic pressure (LVEDP), RSNA and ASNA were recorded. CPRs were stimulated as follows: Short–term mechanical: LVEDP changes (±4, ±6, ±8 mmHg) via aortic and caval vein occlusion; Short–term chemical: phenylbiguanide (PBG–bolus, 0.1, 1, 10 µg IV); Prolonged mechanical (15 min): volume expansion (0.9% NaCl, 5% body weight) and hemorrhage, to modulate LVEDP; Prolonged chemical: PBG infusion (32 µg/min IV, for 15 min); Stimulations were done with 1) all afferents intact, 2) bilateral cervical vagotomy (VX), 3) VX + SAD (sino–aortic denervation; short–term protocols and hemorrhage).

1) Short–term mechanical stimuli decreased RSNA (–52 ± 12%) and ASNA (–37 ± 13%). 2) PBG–bolus decreased RSNA (–54 ± 12%) but increased ASNA (+40 ± 13%). 3) Volume expansion decreased RSNA (–55 ± 7%), ASNA was unaffected. 4) PBG infusion persistently decreased RSNA (–60 ± 6%) but just shortly increased ASNA (+120 ± 15%); VX abolished all responses. 5) Hypotensive hemorrhage decreased RSNA (–39 ± 9%) but increased ASNA (+42 ± 9%). VX abolished RSNA response; ASNA response only disappeared with VX + SAD.

Short–term mechanical CPR stimulation uniformly decreased sympathetic activities, whereas chemical stimulation had opposing effects on renal and adrenal sympathetic responses. All prolonged stimuli decreased RSNA, whereas ASNA was virtually unaffected: Sympathetic out.ow is differentially controlled not only with regard to target organs or afferent receptors but also stimulus time pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ang KK, McRitchie RJ, Minson JB, Llewellyn-Smith IJ, Pilowsky PM, Chalmers JP, Arnolda LF (1999) Activation of spinal opioid receptors contributes to hypotension after hemorrhage in conscious rats. Am J Physiol 276:H1552–H1558

    CAS  PubMed  Google Scholar 

  2. Badoer E, Moguilevski V, McGrath BP (1998) Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit. Am J Physiol 274:R383–R388

    CAS  PubMed  Google Scholar 

  3. Berthoud HR, Powley TL (1993) Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J Auton Nerv Syst 42:153–169

    Article  CAS  PubMed  Google Scholar 

  4. Bezold A, Hirt I (1867) Über die physiologischen Wirkungen des essigsauren Veratrins. Untersuchungen der Physiologischen Labororatorien in Würzburg 1:75–156

    Google Scholar 

  5. Cao WH, Morrison SF (2000) Responses of adrenal sympathetic preganglionic neurons to stimulation of cardiopulmonary receptors. Brain Res 887:46–52

    Article  CAS  PubMed  Google Scholar 

  6. Carlsson S, Skarphedinsson JO, Jennische E, Delle M, Thoren P (1990) Neurophysiological evidence for and characterization of the post-ganglionic innervation of the adrenal gland in the rat. Acta Physiol Scand 140:491–499

    CAS  PubMed  Google Scholar 

  7. DiBona GF (2000) Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension 36:1083–1088

    CAS  PubMed  Google Scholar 

  8. Ditting T, Hilgers KF, Scrogin KE, Stetter A, Linz P, Veelken R (2004) Mechanosensitive cardiac C-fiber response to changes in left ventricular filling, coronary perfusion pressure, hemorrhage and volume expansion in rats. Am J Physiol Heart Circ Physiol DOI, 10.1152/ajpheart.00131.2004

  9. Ditting T, Linz P, Hilgers KF, Jung O, Geiger H, Veelken R (2003) Putative role of epithelial sodium channels (ENaC)in the afferent limb of cardio renal reflexes in rats. Basic Res Cardiol 98:388–400

    Article  CAS  PubMed  Google Scholar 

  10. Evans RG, Ventura S, Dampney RA, Ludbrook J (2001) Neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clin Exp Pharmacol Physiol 28:479–487

    Article  CAS  PubMed  Google Scholar 

  11. Higuchi S, Morgan DA, Mark AL (1988) Contrasting re.ex effects of chemosensitive and mechanosensitive vagal afferents. Hypertension 11:674–679

    CAS  PubMed  Google Scholar 

  12. Jarisch A, Zottermann Y (1948) Depressor re.exes from the heart. Acta Physiol Scand 16:31–51

    Google Scholar 

  13. Krieger EM (1964) Neurogenic Hypertension in the Rat. Circ Res 15:511–521

    CAS  PubMed  Google Scholar 

  14. Kunitake T, Kannan H (2000) Discharge pattern of renal sympathetic nerve activity in the conscious rat: spectral analysis of integrated activity. J Neurophysiol 84:2859–2867

    CAS  PubMed  Google Scholar 

  15. Kurosawa M, Sato A, Sato Y, Suzuki H (1987) Undiminished re.ex responses of adrenal sympathetic nerve activity to stimulation of baroreceptors and cutaneous mechanoreceptors in aged rats. Neurosci Lett 77:193–198

    Article  CAS  PubMed  Google Scholar 

  16. Linz P, Veelken R (2002) Serotonin 5- HT(3) receptors on mechanosensitive neurons with cardiac afferents. Am J Physiol Heart Circ Physiol 282:H1828–H1835

    CAS  PubMed  Google Scholar 

  17. Minisi AJ (1998) Vagal cardiopulmonary reflexes after total cardiac deafferentation. Circulation 98:2615–2620

    CAS  PubMed  Google Scholar 

  18. Morilak DA, Drolet G, Chalmers J (1990) Cardiovascular effects of opioid antagonist naloxone in rostral ventrolateral medulla of rabbits. Am J Physiol 258:R325–R331

    CAS  PubMed  Google Scholar 

  19. Morrison SF (2001) Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol 281:R683–R698

    CAS  PubMed  Google Scholar 

  20. Morrison SF, Cao WH (2000) Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol 279:R1763–R1775

    CAS  PubMed  Google Scholar 

  21. Niijima A (1992) Electrophysiological study on the vagal innervation of the adrenal gland in the rat. J Auton Nerv Syst 41:87–92

    Article  CAS  PubMed  Google Scholar 

  22. Nijima A (1976) Baroreceptor effects on renal and adrenal nerve activity. Am J Physiol 230:1733–1736

    CAS  PubMed  Google Scholar 

  23. Oberg B, Thoren P (1972) Increased activity in left ventricular receptors during hemorrhage or occlusion of caval veins in the cat. A possible cause of the vaso-vagal reaction. Acta Physiol Scand 85:164–173

    CAS  PubMed  Google Scholar 

  24. Persson P (1988) Cardiopulmonary receptors and “neurogenic hypertension”. Acta Physiol Scand Suppl 570:1–53

    CAS  Google Scholar 

  25. Scislo TJ, Kitchen AM, Augustyniak RA, O’Leary DS (2001) Differential patterns of sympathetic responses to selective stimulation of nucleus tractus solitarius purinergic receptor subtypes. Clin Exp Pharmacol Physiol 28:120–124

    Article  CAS  PubMed  Google Scholar 

  26. Scislo TJ, O’Leary DS (1998) Differential control of renal vs. adrenal sympathetic nerve activity by NTS A2a and P2x purinoceptors. Am J Physiol 275:H2130–H2139

    CAS  PubMed  Google Scholar 

  27. Scrogin KE (2003) 5-HT1A receptor agonist 8-OH-DPAT acts in the hindbrain to reverse the sympatholytic response to severe hemorrhage. Am J Physiol Regul Integr Comp Physiol 284:R782–R791

    CAS  PubMed  Google Scholar 

  28. Skoog P, Mansson J, Thoren P (1985) Changes in renal sympathetic outflow during hypotensive haemorrhage in rats. Acta Physiol Scand 125:655–660

    Article  CAS  PubMed  Google Scholar 

  29. Thoren P (1979) Role of cardiac vagal Cfibers in cardiovascular control. Rev Physiol Biochem Pharmacol 86:1–94

    CAS  PubMed  Google Scholar 

  30. Togashi H, Yoshioka M, Tochihara M, Matsumoto M, Saito H (1990) Differential effects of hemorrhage on adrenal and renal nerve activity in anesthetized rats. Am J Physiol 259:H1134–H1141

    CAS  PubMed  Google Scholar 

  31. Veelken R, Hilgers KF, Ditting T, Fierlbeck W, Geiger H, Schmieder RE (1996) Subthreshold stimulation of a serotonin 5-HT3 reflex attenuates cardiovascular reflexes. Am J Physiol 271:R1500–R1506

    CAS  PubMed  Google Scholar 

  32. Hilgers KF, Leonard M, Scrogin K, Ruhe J, Mann JF, Luft FC (1993) A highly selective cardiorenal serotonergic 5-HT3-mediated reflex in rats. Am J Physiol 264:H1871–H1877

    PubMed  Google Scholar 

  33. Veelken R, Leonard M, Stetter A, Hilgers KF, Mann JF, Reeh PW, Geiger H, Luft FC (1997) Pulmonary serotonin 5-HT3-sensitive afferent fibers modulate renal sympathetic nerve activity in rats. Am J Physiol 272:H979–H986

    CAS  PubMed  Google Scholar 

  34. Veelken R, Sawin LL, DiBona GF (1990) Epicardial serotonin receptors in circulatory control in conscious Sprague-Dawley rats. Am J Physiol 258:H466–H472

    CAS  PubMed  Google Scholar 

  35. Veelken R, Stetter A, Dickel T, Hilgers KF (2003) Bimodality of cardiac vagal afferent C-fibres in the rat. Pflugers Arch 446:516–522

    Article  CAS  PubMed  Google Scholar 

  36. Victor RG, Thoren P, Morgan DA, Mark AL (1989) Differential control of adrenal and renal sympathetic nerve activity during hemorrhagic hypotension in rats. Circ Res 64:686–694

    CAS  PubMed  Google Scholar 

  37. Whalen EJ, Johnson AK, Lewis SJ (2000) Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch re.ex. Brain Res 873:302–305

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Veelken M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditting, T., Hilgers, K.F., Scrogin, K.E. et al. Influence of short–term versus prolonged cardiopulmonary receptor stimulation on renal and preganglionic adrenal sympathetic nerve activity in rats. Basic Res Cardiol 101, 223–234 (2006). https://doi.org/10.1007/s00395-005-0572-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0572-1

Key words

Navigation