Skip to main content

Advertisement

Log in

Improvement of functional dyspepsia with Suaeda salsa (L.) Pall via regulating brain-gut peptide and gut microbiota structure

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The traditional Chinese herbal medicine Suaeda salsa (L.) Pall (S. salsa) with a digesting food effect was taken as the research object, and its chemical composition and action mechanism were explored.

Methods

The chemical constituents of S. salsa were isolated and purified by column chromatography, and their structures were characterized by nuclear magnetic resonance. The food accumulation model in mice was established, and the changes of the aqueous extract of S. salsa in gastric emptying and intestinal propulsion rate, colonic tissue lesions, serum brain-gut peptide hormone, colonic tissue protein expression, and gut microbiota structure were compared.

Results

Ten compounds were isolated from S. salsa named as naringenin (1), hesperetin (2), baicalein (3), luteolin (4), isorhamnetin (5), taxifolin (6), isorhamnetin-3-O-β-d-glucoside (7), luteolin-3′-d-glucuronide (8), luteolin-7-O-β-d-glucuronide (9), and quercetin-3-O-β-d-glucuronide (10), respectively. The aqueous extract of S. salsa can improve the pathological changes of the mice colon and intestinal peristalsis by increasing the rate of gastric emptying and intestinal propulsion. By adjusting the levels of 5-HT, CCK, NT, SS, VIP, GT-17, CHE, MTL, and ghrelin, it can upregulate the levels of c-kit, SCF, and GHRL protein, and restore the imbalanced structure of gut microbiota, further achieve the purpose of treating the syndrome of indigestion. The effect is better with the increase of dose.

Conclusion

S. salsa has a certain therapeutic effect on mice with the syndrome of indigestion. From the perspective of “brain-gut-gut microbiota”, the mechanism of digestion and accumulation of S. salsa was discussed for the first time, which provided an experimental basis for further exploring the material basis of S. salsa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. He Q, Liu C, Wang T, Sun J, Zhou X, Wang Y, Ma L, Wan J (2020) Research on mechanism of the effect of charred hawthorn on digestive by SCF_c-kit pathway. https://doi.org/10.21203/rs.3.rs-138593/v1

  2. Xian F, Liu T, Bai C, Yang G, Ma X, Wang B, Huang L, Liu S, Zhen J, He J, Yu H, Ma Y, Wang T, Gu X (2021) Effect of Yinlai Decoction on the metabolic pathways in the lung of high-calorie diet-induced pneumonia rats. J Tradit Chin Med Sci 8(1):4–16. https://doi.org/10.1016/j.jtcms.2021.01.008

    Article  CAS  Google Scholar 

  3. Medić B (2021) Modern approach to dyspepsia. Acta Clin Croat 60(4):731–738. https://doi.org/10.20471/acc.2021.60.04.21

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tziatzios G, Gkolfakis P, Papanikolaou IS, Mathur R, Pimentel M, Giamarellos-Bourboulis EJ, Triantafyllou K (2020) Gut microbiota dysbiosis in functional dyspepsia. Microorganisms 8(5):691. https://doi.org/10.3390/microorganisms8050691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malagelada Juan R (2020) The brain-gut team. Dig Dis 38(4):293–298. https://doi.org/10.1159/000505810

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y-W, Hui H-Y, Tan Z-J (2019) Gastrointestinal peptide hormones associated with brain-intestinal axis. World Chinese Journal of Digestology 27(16):1007–1012. https://doi.org/10.11569/wcjd.v27.i16.1007

    Article  Google Scholar 

  7. Zhu J, Tong H, Ye X, Zhang J, Huang Y, Yang M, Zhong L, Gong Q (2020) The effects of low-dose and high-dose decoctions of Fructus aurantii in a rat model of functional dyspepsia. Med Sci Monit 26:e919815. https://doi.org/10.12659/msm.919815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Liu W, Zhang S, Wang J, Yang X, Wang R, Yan T, Wu B, Du Y, Jia Y (2022) Wei-Tong-Xin ameliorates functional dyspepsia via inactivating TLR4/MyD88 by regulating gut microbial structure and metabolites. Phytomedicine 102:154180. https://doi.org/10.1016/j.phymed.2022.154180

    Article  CAS  PubMed  Google Scholar 

  9. Osadchiy V, Martin CR, Mayer EA (2019) Gut microbiome and modulation of CNS function. Compr Physiol 10(1):57–72. https://doi.org/10.1002/cphy.c180031

    Article  PubMed  Google Scholar 

  10. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314. https://doi.org/10.1038/nrgastro.2009.35

    Article  CAS  PubMed  Google Scholar 

  11. Xuemin Z (2017) Ben Cao Gang Mu Shi Yi, vol 3. China Classics Publishing House, Beijing

    Google Scholar 

  12. Wang X, Shao X, Zhang W, Sun T, Ding Y, Lin Z, Li Y (2022) Genus Suaeda: advances in phytology, chemistry, pharmacology and clinical application (1895–2021). Pharmacol Res 179:106203. https://doi.org/10.1016/j.phrs.2022.106203

    Article  CAS  PubMed  Google Scholar 

  13. Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H (2023) Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2023.2230501

    Article  PubMed  Google Scholar 

  14. Wu L, Jin X, Zheng C, Ma F, Zhang X, Gao P, Gao J, Zhang L (2023) Bidirectional effects of Mao Jian green tea and its flavonoid glycosides on gastrointestinal motility. Foods 12(4):854. https://doi.org/10.3390/foods12040854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, JIA Q, Guo L, GU C, Li L, Wang X, Ling J (2022) Network pharmacological analysis of the mechanism of action of fructus aurantii immaturus in the treatment of functional dyspepsia. Tradit Chin Drug Res Clin Pharmacol 33(5):666–673. https://doi.org/10.19378/j.issn.1003-9783.2022.05.013

  16. Bian Y, Lei J, Zhong J, Wang B, Wan Y, Li J, Liao C, He Y, Liu Z, Ito K, Zhang B (2022) Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J Nutr Biochem 99:108840. https://doi.org/10.1016/j.jnutbio.2021.108840

    Article  CAS  PubMed  Google Scholar 

  17. Horai Y, Kakimoto T, Takemoto K, Tanaka M (2017) Quantitative analysis of histopathological findings using image processing software. J Toxicol Pathol 30(4):351–358. https://doi.org/10.1293/tox.2017-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu YJ, Tang B, Wang FC, Tang L, Lei YY, Luo Y, Huang SJ, Yang M, Wu LY, Wang W, Liu S, Yang SM, Zhao XY (2020) Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics 10(12):5225–5241. https://doi.org/10.7150/thno.43716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhuang H, Lv Q, Zhong C, Cui Y, He L, Zhang C, Yu J (2021) Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front Immunol 12:649463. https://doi.org/10.3389/fimmu.2021.649463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang M, Wang YN, Wang HQ, Yang WQ, Ma SG, Li Y, Qu J, Liu YB, Yu SS (2023) Chemical constituents from leaves of Craibiodendron yunnanense. China J Chin Materia Med 48(4):978–984. https://doi.org/10.19540/j.cnki.cjcmm.20220608.201

    Article  Google Scholar 

  21. Asai T, Matsukawa T, Ishihara A, Kajiyama S (2016) Isolation and characterization of wound-induced compounds from the leaves of Citrus hassaku. J Biosci Bioeng 122:208–212. https://doi.org/10.1016/j.jbiosc.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  22. Chethankumara GP, Nagaraj K, Krishna V, Krishnaswamy G (2021) Isolation, characterization and in vitro cytotoxicity studies of bioactive compounds from Alseodaphne semecarpifolia Nees. Heliyon 7(6):e07325. https://doi.org/10.1016/j.heliyon.2021.e07325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang L, Wang C, Chen J, Qiu J, Du C, Wei Y, Hao X, Gu W (2023) Chemical constituents and bioactivitie of whole plant of Primulina eburnea from Guizhou. Chinese Traditional and Herbal Drugs 54:3430–3437. https://doi.org/10.7501/j.issn.0253-2670.2023.11.005

  24. Delgado-Núñez EJ, Zamilpa A, González-Cortazar M, Olmedo-Juárez A, Cardoso-Taketa A, Sánchez-Mendoza E, Tapia-Maruri D, Salinas-Sánchez DO, Mendoza-de Gives P (2020) Isorhamnetin: a nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 10(5):773. https://doi.org/10.3390/biom10050773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng Z-C, He J, Pan X-G, Ye X-S, Li X-X, Yin W-F, Zhang W-K, Xu J-K (2021) Isolation and identification of chemical constituents from fruit of Cornus officinalis. Chinese Traditional and Herbal Drugs. https://doi.org/10.7501/j.issn.0253-2670.2021.15.005

    Article  Google Scholar 

  26. Zaher AM, Sultan R, Ramadan T, Amro A (2020) New antimicrobial and cytotoxic benzofuran glucoside from Senecio glaucus L. Nat Prod Res 36(1):136–141. https://doi.org/10.1080/14786419.2020.1768089

    Article  CAS  PubMed  Google Scholar 

  27. Heitz A, Carnat A, Fraisse D, Carnat A-P, Lamaison J-L (2000) Luteolin 3′-glucuronide, the major flavonoid from Melissa officinalis subsp. officinalis. Fitoterapia 71(2):201–202. doi:https://doi.org/10.1016/s0367-326x(99)00118-5

  28. Xu Z, HE Ming-zhen, Yao M, Wang Z, Ouyang H, Li Z, Yang S, Li J, Feng Y (2023) Study on chemical constituents of Ainsliaea fragrans. Chinese Traditional and Herbal Drugs 54:1728–1735. https://doi.org/10.7501/j.issn.0253-2670.2023.06.004

  29. Zhang XF, Thuong PT, Jin W, Su ND, Sok DE, Bae K, Kang SS (2005) Antioxidant activity of anthraquinones and flavonoids from flower of Reynoutria sachalinensis. Arch Pharmacal Res 28(1):22–27. https://doi.org/10.1007/Bf02975130

    Article  Google Scholar 

  30. Amerikanou C, Kleftaki S-A, Valsamidou E, Chroni E, Biagki T, Sigala D, Koutoulogenis K, Anapliotis P, Gioxari A, Kaliora AC (2023) Food, dietary patterns, or is eating behavior to blame? Analyzing the nutritional aspects of functional dyspepsia. Nutrients 15(6):1544. https://doi.org/10.3390/nu15061544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho L, Zhong CCW, Wong CHL, Wu JCY, Chan KKH, Wu IXY, Leung TH, Chung VCH (2021) Chinese herbal medicine for functional dyspepsia: a network meta-analysis of prokinetic-controlled randomised trials. Chinese Medicine 16(1):140. https://doi.org/10.1186/s13020-021-00556-6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim YS, Kim J-W, Ha N-Y, Kim J, Ryu HS (2020) Herbal therapies in functional gastrointestinal disorders: a narrative review and clinical implication. Front Psych 11:601. https://doi.org/10.3389/fpsyt.2020.00601

    Article  Google Scholar 

  33. Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46(6):261–274. https://doi.org/10.1016/j.npep.2012.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng WW, Yang F, Shen WL, Zhan C, Zheng P, Hu J (2022) Interactions between central nervous system and peripheral metabolic organs. Sci China Life Sci 65(10):1929–1958. https://doi.org/10.1007/s11427-021-2103-5

    Article  PubMed  Google Scholar 

  35. Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J (2020) Recent advances with 5-HT3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 40(5):1593–1678. https://doi.org/10.1002/med.21666

    Article  CAS  PubMed  Google Scholar 

  36. Spencer NJ, Keating DJ (2022) Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol. https://doi.org/10.1111/bph.15930

    Article  PubMed  Google Scholar 

  37. De Deurwaerdere P, Di Giovanni G (2021) 5-HT interaction with other neurotransmitters: an overview. Prog Brain Res 259:1–5. https://doi.org/10.1016/bs.pbr.2021.01.001

    Article  PubMed  Google Scholar 

  38. Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X (2021) The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int J Mol Sci 22(15):7931. https://doi.org/10.3390/ijms22157931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okonkwo O, Zezoff D, Adeyinka A (2023) Biochemistry, cholecystokinin. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL

  40. Cawthon CR, de La Serre CB (2021) The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 138:170492. https://doi.org/10.1016/j.peptides.2020.170492

    Article  CAS  PubMed  Google Scholar 

  41. Özdemir-Kumral ZN, Koyuncuoğlu T, Arabacı-Tamer S, Çilingir-Kaya ÖT, Köroğlu AK, Yüksel M, Yeğen BÇ (2021) High-fat diet enhances gastric contractility, but abolishes nesfatin-1-induced inhibition of gastric emptying. J Neurogastroenterol Motil 27(2):265–278. https://doi.org/10.5056/jnm20206

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liang QK, Mao LF, Du XJ, Li YX, Yan Y, Liang JJ, Liu JH, Wang LD, Li HF (2018) Pingwei capsules improve gastrointestinal motility in rats with functional dyspepsia. J Tradit Chin Med 38(1):43–53. https://doi.org/10.1016/j.jtcm.2018.01.008

    Article  PubMed  Google Scholar 

  43. Barchetta I, Baroni MG, Melander O, Cavallo MG (2022) New insights in the control of fat homeostasis: the role of neurotensin. Int J Mol Sci 23(4):2209. https://doi.org/10.3390/ijms23042209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gereau GB, Garrison SKD, McElligott ZA (2023) Neurotensin and energy balance. J Neurochem 166(2):189–200. https://doi.org/10.1111/jnc.15868

    Article  CAS  PubMed  Google Scholar 

  45. Wu Z, Stadler N, Abbaci A, Liu J, Boullier A, Marie N, Biondi O, Moldes M, Morichon R, Feve B, Melander O, Forgez P (2021) Effect of monoclonal antibody blockade of long fragment neurotensin on weight loss, behavior, and metabolic traits after high-fat diet induced obesity. Front Endocrinol 12:739287. https://doi.org/10.3389/fendo.2021.739287

    Article  Google Scholar 

  46. Liguz-Lecznar M, Dobrzanski G, Kossut M (2022) Somatostatin and somatostatin-containing interneurons—from plasticity to pathology. Biomolecules 12(2):312. https://doi.org/10.3390/biom12020312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shamsi BH, Chatoo M, Xu XK, Xu X, Chen XQ (2021) Versatile functions of somatostatin and somatostatin receptors in the gastrointestinal system. Front Endocrinol 12:652363. https://doi.org/10.3389/fendo.2021.652363

    Article  Google Scholar 

  48. Fahrenkrug J (1979) Vasoactive intestinal polypeptide: measurement, distribution and putative neurotransmitter function. Digestion 19(3):146–169. https://doi.org/10.1159/000198339

    Article  Google Scholar 

  49. Iwasaki M, Akiba Y, Kaunitz JD (2019) Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 8:F1000. https://doi.org/10.12688/f1000research.18039.1

  50. di Mario F, Cavallaro LG (2008) Non-invasive tests in gastric diseases. Dig Liver Dis 40(7):523–530. https://doi.org/10.1016/j.dld.2008.02.028

    Article  PubMed  Google Scholar 

  51. Rehfeld JF, Friis-Hansen L, Goetze JP, Hansen TVO (2007) The biology of cholecystokinin and gastrin peptides. Curr Top Med Chem 7(12):1154–1165

    Article  CAS  PubMed  Google Scholar 

  52. Ericsson P, Håkanson R, Rehfeld JF, Norlén P (2010) Gastrin release: antrum microdialysis reveals a complex neural control. Regul Pept 161(1–3):22–32. https://doi.org/10.1016/j.regpep.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  53. Helgadóttir H, Metz DC, Yang Y-X, Rhim AD, Björnsson ES (2014) The effects of long-term therapy with proton pump inhibitors on meal stimulated gastrin. Dig Liver Dis 46(2):125–130. https://doi.org/10.1016/j.dld.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  54. Silman I (2021) The multiple biological roles of the cholinesterases. Prog Biophys Mol Biol 162:41–56. https://doi.org/10.1016/j.pbiomolbio.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  55. Mori H, Verbeure W, Tanemoto R, Sosoranga ER, Jan T (2023) Physiological functions and potential clinical applications of motilin. Peptides 160:170905. https://doi.org/10.1016/j.peptides.2022.170905

    Article  CAS  PubMed  Google Scholar 

  56. Kitazawa T, Kaiya H (2021) Motilin comparative study: structure, distribution, receptors, and gastrointestinal motility. Front Endocrinol 12:700884. https://doi.org/10.3389/fendo.2021.700884

    Article  Google Scholar 

  57. Li T, Yan Q, Wen Y, Liu J, Sun J, Jiang Z (2021) Synbiotic yogurt containing konjac mannan oligosaccharides and Bifidobacterium animalis ssp. lactis BB12 alleviates constipation in mice by modulating the stem cell factor (SCF)/c-kit pathway and gut microbiota. J Dairy Sci 104(5):5239–5255. https://doi.org/10.3168/jds.2020-19449

    Article  CAS  PubMed  Google Scholar 

  58. Sakata I, Takemi S (2021) Ghrelin-cell physiology and role in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 28(2):238–242. https://doi.org/10.1097/med.0000000000000610

    Article  CAS  PubMed  Google Scholar 

  59. Lennartsson J, Rönnstrand L (2012) Stem cell factor receptor/c-kit: from basic science to clinical implications. Physiol Rev 92(4):1619–1649. https://doi.org/10.1152/physrev.00046.2011

    Article  CAS  PubMed  Google Scholar 

  60. Chang YZG, Zhang YC, Liu YM, Fan MM (2023) Research progress in signaling pathways related to treatment of functional dyspepsia with traditional Chinese medicine. China J Chin Materia Med 48(20):5397–5403. https://doi.org/10.19540/j.cnki.cjcmm.20230619.601

    Article  Google Scholar 

  61. Kitazawa T, Kaiya H (2019) Regulation of gastrointestinal motility by motilin and ghrelin in vertebrates. Front Endocrinol 10:278. https://doi.org/10.3389/fendo.2019.00278

    Article  Google Scholar 

  62. Joung JY, Choi SH, Son CG (2021) Interstitial cells of Cajal: potential targets for functional dyspepsia treatment using medicinal natural products. Evid Based Complement Alternat Med 2021:9952691. https://doi.org/10.1155/2021/9952691

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Yang L, Bi C, Tang K, Zhang B, Smaoui S (2021) Nostoc sphaeroides Kütz polysaccharide improved constipation and promoted intestinal motility in rats. Evid Based Complement Alternat Med 2021:1–11. https://doi.org/10.1155/2021/5596531

    Article  Google Scholar 

  64. Kuang H, Zhang C, Zhang W, Cai H, Yang L, Yuan N, Yuan Y, Yang Y, Zuo C, Zhong F, Mariod A (2022) Electroacupuncture improves intestinal motility through exosomal miR-34c-5p targeting SCF/c-kit signaling pathway in slow transit constipation model rats. Evid Based Complement Alternat Med 2022:1–10. https://doi.org/10.1155/2022/8043841

    Article  Google Scholar 

  65. Liu W, Zhi A (2021) The potential of quercetin to protect against loperamideinduced constipation in rats. Food Sci Nutr 9(6):3297–3307. https://doi.org/10.1002/fsn3.2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jin B, Ha SE, Wei L, Singh R, Zogg H, Clemmensen B, Heredia DJ, Gould TW, Sanders KM, Ro S (2021) Colonic motility is improved by the activation of 5-HT2B receptors on interstitial cells of Cajal in diabetic mice. Gastroenterology 161(2):608-622.e7. https://doi.org/10.1053/j.gastro.2021.04.040

    Article  CAS  PubMed  Google Scholar 

  67. Yada T, Kohno D, Maejima Y, Sedbazar U, Arai T, Toriya M, Maekawa F, Kurita H, Niijima A, Yakabi K (2012) Neurohormones, rikkunshito and hypothalamic neurons interactively control appetite and anorexia. Curr Pharm Design 18(31):4854–4864. https://doi.org/10.2174/138161212803216898

    Article  CAS  Google Scholar 

  68. Zhao Q, Xing F, Tao YY, Liu HL, Huang K, Peng Y, Feng NP, Liu CH (2020) Xiaozhang Tie improves intestinal motility in rats with cirrhotic ascites by regulating the stem cell factor/c-kit pathway in interstitial cells of Cajal. Front Pharmacol 11:1. https://doi.org/10.3389/fphar.2020.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gong YY, Si XM, Lin L, Lu J (2012) Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal. World J Gastroenterol 18(48):7184–7193. https://doi.org/10.3748/wjg.v18.i48.7184

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hwang SJ, Wang JH, Lee JS, Lee HD, Choi TJ, Choi SH, Son CG (2021) Yeokwisan, a standardized herbal formula, enhances gastric emptying via modulation of the ghrelin pathway in a loperamide-induced functional dyspepsia mouse model. Front Pharmacol 12:753153. https://doi.org/10.3389/fphar.2021.753153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang P (2022) Influence of foods and nutrition on the gut microbiome and implications for intestinal health. Int J Mol Sci 23(17):9588. https://doi.org/10.3390/ijms23179588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hills R, Pontefract B, Mishcon H, Black C, Sutton S, Theberge C (2019) Gut microbiome: profound implications for diet and disease. Nutrients 11(7):1613. https://doi.org/10.3390/nu11071613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu Y, Wu Y, Wu H, Wu C, Ji E, Xu J, Zhang Y, Wei J, Zhao Y, Yang H (2021) Systematic survey of the alteration of the faecal microbiota in rats with gastrointestinal disorder and modulation by multicomponent drugs. Front Pharmacol 12:670335. https://doi.org/10.3389/fphar.2021.670335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L, Wang G, Wang F, Xu J, Cao H, Xu H, Lv Q, Zhong Z, Chen Y, Qimuge S, Menghe B, Zheng Y, Zhao L, Chen W, Zhang H (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9(9):1979–1990. https://doi.org/10.1038/ismej.2015.11

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang L, Liu C, Jiang Q, Yin Y (2021) Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol Metab 32(3):159–169. https://doi.org/10.1016/j.tem.2020.12.003

    Article  CAS  PubMed  Google Scholar 

  76. Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J (2021) Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 13(1):1–28. https://doi.org/10.1080/19490976.2021.1907272

    Article  CAS  PubMed  Google Scholar 

  77. Carretta MD, Quiroga J, López R, Hidalgo MA, Burgos RA (2021) Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer. Front Physiol 12:662739. https://doi.org/10.3389/fphys.2021.662739

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tang H, Zhan ZY, Zhang Y, Huang XX (2022) Propionylation of lysine, a new mechanism of short-chain fatty acids affecting bacterial virulence. Am J Transl Res 14(8):5773–5784

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yin Tong BL (2022) Research progress of physiological function of short-chain fatty acids in the intestine. Advances in Clinical Medicine 12(02):939–945. https://doi.org/10.12677/acm.2022.122137

    Article  Google Scholar 

  80. Zhou L, Zeng Y, Zhang H, Ma Y (2022) The role of gastrointestinal microbiota in functional dyspepsia: a review. Front Physiol 13:910568. https://doi.org/10.3389/fphys.2022.910568

    Article  PubMed  PubMed Central  Google Scholar 

  81. Andoh A, Tsujikawa T, Fujiyama Y (2003) Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Design 9(4):347–358. https://doi.org/10.2174/1381612033391973

    Article  CAS  Google Scholar 

  82. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Science and Technology Department of Jilin Province (file no.: 20230402047GH) for providing research grant to carry out related research work.

Author information

Authors and Affiliations

Authors

Contributions

Zhang Wenjun: Writing-original draft, conceptualization. Wang Xueyu: Writing-original draft, conceptualization. Yin Shuanghui: Investigation, methodology. Wang Ye: Software. Li Yong: Writing—review & editing. Ding Yuling: Writing—review & editing, conceptualization, supervision. Zhang Wenjun and Wang Xueyu: Contributed equally to this work.

Corresponding author

Correspondence to Yuling Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest pertaining to this research paper.

Ethics approval

All animal experiments were carried out by the relevant animal practice norms and regulations of Changchun University of Chinese Medicine, China, and had passed the approval of animal experiment ethics review of Changchun University of Chinese Medicine (approval number: 2022527), and the license number for experimental animals is SYXK (Ji) 2018–0014.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8717 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, X., Yin, S. et al. Improvement of functional dyspepsia with Suaeda salsa (L.) Pall via regulating brain-gut peptide and gut microbiota structure. Eur J Nutr (2024). https://doi.org/10.1007/s00394-024-03401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00394-024-03401-2

Keywords

Navigation