Skip to main content
Log in

Peony seed oil decreases plasma cholesterol and favorably modulates gut microbiota in hypercholesterolemic hamsters

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Peony (Paeonia spp.) seed oil (PSO) contains a high amount of α-linolenic acid. The effects of PSO on hypercholesterolemia and gut microbiota remains unclear. The present study was to investigate effects of PSO supplementation on cholesterol metabolism and modulation of the gut microbiota.

Methods

Male Golden Syrian hamsters (n = 40) were randomly divided into five groups (n = 8, each) fed one of the following diets namely low-cholesterol diet (LCD); high cholesterol diet (HCD); HCD with PSO substituting 50% lard (LPSO), PSO substituting 100% lard (HPSO) and HCD with addition of 0.5% cholestyramine (PCD), respectively, for 6 weeks.

Results

PSO supplementation dose-dependently reduced plasma total cholesterol (TC) by 9–14%, non-high-density lipoprotein cholesterol (non-HDL-C) by 7–18% and triacylglycerols (TG) by 14–34% (p < 0.05). In addition, feeding PSO diets reduced the formation of plaque lesions by 49–61% and hepatic lipids by 9–19% compared with feeding HCD diet (p < 0.01). PSO also altered relative genus abundance of unclassified_f__Coriobacteriaceae, unclassified_f__Erysipelotrichaceae, Peptococcus, unclassified_f__Ruminococcaceae, norank_o__Mollicutes_RF9 and Christensenellaceae_R-7_group.

Conclusions

It was concluded that PSO was effective in reducing plasma cholesterol and hepatic lipids and favorably modulating gut microbiota associated with cholesterol metabolism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442. https://doi.org/10.1371/journal.pmed.0030442

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fuster V, Mearns BM (2009) The CVD paradox: mortality vs prevalence. Nat Rev Cardiol 6:669–669. https://doi.org/10.1038/nrcardio.2009.187

    Article  PubMed  Google Scholar 

  3. Mensah GA, Wei GS, Sorlie PD et al (2017) Decline in cardiovascular mortality: possible causes and implications. Circ Res 120:366–380. https://doi.org/10.1161/CIRCRESAHA.116.309115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ford ES, Ajani UA, Croft JB et al (2007) Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med 356:2388–2398. https://doi.org/10.1056/NEJMsa053935

    Article  CAS  PubMed  Google Scholar 

  5. Ezzati M, Obermeyer Z, Tzoulaki I et al (2015) Contributions of risk factors and medical care to cardiovascular mortality trends. Nat Rev Cardiol 12:508–530. https://doi.org/10.1038/nrcardio.2015.82

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40:195–211. https://doi.org/10.1016/j.pop.2012.11.003

    Article  PubMed  Google Scholar 

  7. Law MR, Wald NJ, Thompson SG (1994) By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 308:367–372. https://doi.org/10.1136/bmj.308.6925.367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Z-Y, Ma KY, Liang Y et al (2011) Role and classification of cholesterol-lowering functional foods. J Funct Foods 3:61–69. https://doi.org/10.1016/j.jff.2011.02.003

    Article  CAS  Google Scholar 

  9. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510

    Article  CAS  PubMed  Google Scholar 

  10. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  11. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. https://doi.org/10.1038/nrgastro.2012.156

    Article  CAS  PubMed  Google Scholar 

  12. Mondot S, de Wouters T, Doré J, Lepage P (2013) The human gut microbiome and its dysfunctions. Dig Dis 31:278–285. https://doi.org/10.1159/000354678

    Article  PubMed  Google Scholar 

  13. Hooks KB, O’Malley MA (2017) Dysbiosis and its discontents. MBio. https://doi.org/10.1128/mBio.01492-17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wilson TWH, Takeshi K, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120:1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715

    Article  CAS  Google Scholar 

  15. Marco W, Weeks TL, Hazen SL (2020) Gut microbiota and cardiovascular disease. Circ Res 127:553–570. https://doi.org/10.1161/CIRCRESAHA.120.316242

    Article  CAS  Google Scholar 

  16. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6:39–51. https://doi.org/10.1177/1756283X12459294

    Article  CAS  Google Scholar 

  17. Vijay A, Astbury S, Le Roy C et al (2021) The prebiotic effects of omega-3 fatty acid supplementation: a six-week randomised intervention trial. Gut Microbes 13:1–11. https://doi.org/10.1080/19490976.2020.1863133

    Article  CAS  PubMed  Google Scholar 

  18. Costantini L, Molinari R, Farinon B, Merendino N (2017) Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 18:2645. https://doi.org/10.3390/ijms18122645

    Article  CAS  PubMed Central  Google Scholar 

  19. He C, Peng Y, Xiao W et al (2013) Determination of chemical variability of phenolic and monoterpene glycosides in the seeds of Paeonia species using HPLC and profiling analysis. Food Chem 138:2108–2114. https://doi.org/10.1016/j.foodchem.2012.11.049

    Article  CAS  PubMed  Google Scholar 

  20. Zhu W, Li X, Liu S et al (2010) Toxicological assessment of peony seed oil. Food Sci 31:248. https://doi.org/10.7506/spkx1002-6630-201011054

    Article  CAS  Google Scholar 

  21. Yang X, Zhang D, Song L et al (2017) Chemical profile and antioxidant activity of the oil from Peony seeds (Paeonia suffruticosa Andr.). Oxid Med Cell Longev. https://doi.org/10.1155/2017/9164905

    Article  PubMed  PubMed Central  Google Scholar 

  22. He D-Y, Dai S-M (2011) Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Front Pharmacol. https://doi.org/10.3389/fphar.2011.00010

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sevim D, Senol FS, Gulpinar AR et al (2013) Discovery of potent in vitro neuroprotective effect of the seed extracts from seven Paeonia L. (peony) taxa and their fatty acid composition. Ind Crops Prod 49:240–246. https://doi.org/10.1016/j.indcrop.2013.05.001

    Article  CAS  Google Scholar 

  24. Su J, Ma C, Liu C et al (2016) Hypolipidemic activity of peony seed oil rich in α-linolenic, is mediated through inhibition of lipogenesis and upregulation of fatty acid β-oxidation. J Food Sci 81:H1001-1009. https://doi.org/10.1111/1750-3841.13252

    Article  CAS  PubMed  Google Scholar 

  25. Zheng Z, Han J, Mao Y et al (2017) Health benefits of dietary tree peony seed oil in a high fat diet hamster model. Funct Foods Health Dis 7:135–148. https://doi.org/10.31989/ffhd.v7i2.313

    Article  CAS  Google Scholar 

  26. Zhu H, Chen J, He Z et al (2019) Soybean germ oil reduces blood cholesterol by inhibiting cholesterol absorption and enhancing bile acid excretion. Food Funct 10:1836–1845. https://doi.org/10.1039/c8fo02585a

    Article  CAS  PubMed  Google Scholar 

  27. Si W, Liang Y, Ma KY et al (2012) Antioxidant activity of capsaicinoid in canola oil. J Agric Food Chem 60:6230–6234. https://doi.org/10.1021/jf301744q

    Article  CAS  PubMed  Google Scholar 

  28. Lei L, Chen J, Liu Y et al (2018) Dietary wheat bran oil is equally as effective as rice bran oil in reducing plasma cholesterol. J Agric Food Chem 66:2765–2774. https://doi.org/10.1021/acs.jafc.7b06093

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Hao W, He Z et al (2019) Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct 10:2847–2860. https://doi.org/10.1039/C8FO02051E

    Article  CAS  PubMed  Google Scholar 

  30. Hao W, Zhu H, Chen J et al (2020) Wild melon seed oil reduces plasma cholesterol and modulates gut microbiota in hypercholesterolemic hamsters. J Agric Food Chem 68:2071–2081. https://doi.org/10.1021/acs.jafc.9b07302

    Article  CAS  PubMed  Google Scholar 

  31. Rafieian-Kopaei M, Setorki M, Doudi M et al (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5:927–946

    PubMed  PubMed Central  Google Scholar 

  32. Bertani B, Ruiz N (2018) Function and biogenesis of lipopolysaccharides. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0001-2018.10.1128/ecosalplus.ESP-0001-2018

    Article  PubMed  PubMed Central  Google Scholar 

  33. Janel N, Noll C (2014) Chapter 51—Protection and reversal of hepatic fibrosis by polyphenols. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease. Academic Press, San Diego, pp 665–679

    Chapter  Google Scholar 

  34. de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R et al (2018) Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11:E51. https://doi.org/10.3390/nu11010051

    Article  CAS  PubMed  Google Scholar 

  35. Ander BP, Dupasquier CM, Prociuk MA, Pierce GN (2003) Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp Clin Cardiol 8:164–172

    CAS  PubMed  PubMed Central  Google Scholar 

  36. DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 18:609–621. https://doi.org/10.1038/cr.2008.61

    Article  CAS  PubMed  Google Scholar 

  37. Edwards PA, Kast-Woelbern HR, Kennedy MA (2003) Chapter 170—Cholesterol signaling. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Academic Press, Burlington, pp 287–290

    Chapter  Google Scholar 

  38. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232. https://doi.org/10.1038/nrg3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973. https://doi.org/10.1016/j.febslet.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  40. Danielsson H (1960) On the origin of the neutral fecal sterols and their relation to cholesterol metabolism in the rat: bile acids and steroids 92. Acta Physiol Scand 48:364–372. https://doi.org/10.1111/j.1748-1716.1960.tb01869.x

    Article  CAS  PubMed  Google Scholar 

  41. Afonso MS, Machado RM, Lavrador MS et al (2018) Molecular pathways underlying cholesterol homeostasis. Nutrients. https://doi.org/10.3390/nu10060760

    Article  PubMed  PubMed Central  Google Scholar 

  42. Betters JL, Yu L (2010) NPC1L1 and cholesterol transport. FEBS Lett 584:2740–2747. https://doi.org/10.1016/j.febslet.2010.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iqbal J, Rudel LL, Hussain MM (2008) Microsomal triglyceride transfer protein enhances cellular cholesteryl esterification by relieving product inhibition*. J Biol Chem 283:19967–19980. https://doi.org/10.1074/jbc.M800398200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen TM, Sawyer JK, Kelley KL et al (2012) ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation. J Lipid Res 53:1598–1609. https://doi.org/10.1194/jlr.M026823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kazemian N, Mahmoudi M, Halperin F et al (2020) Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 8:36. https://doi.org/10.1186/s40168-020-00821-0

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martínez I, Perdicaro DJ, Brown AW et al (2013) Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol 79:516–524. https://doi.org/10.1128/AEM.03046-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Claus SP, Ellero SL, Berger B et al (2011) Colonization-induced host-gut microbial metabolic interaction. MBio. https://doi.org/10.1128/mBio.00271-10

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martínez I, Wallace G, Zhang C et al (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75:4175–4184. https://doi.org/10.1128/AEM.00380-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spencer MD, Hamp TJ, Reid RW et al (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140:976–986. https://doi.org/10.1053/j.gastro.2010.11.049

    Article  CAS  PubMed  Google Scholar 

  50. Kang Y, Li Y, Du Y et al (2019) Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota. Int J Obes 43:1631–1643. https://doi.org/10.1038/s41366-018-0187-x

    Article  CAS  Google Scholar 

  51. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ (2017) Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 101:47–64. https://doi.org/10.1007/s00253-016-8006-6

    Article  CAS  PubMed  Google Scholar 

  52. Ryan PM, Stanton C, Caplice NM (2017) Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions. Diabetol Metab Syndr 9:102. https://doi.org/10.1186/s13098-017-0299-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang B, Tontonoz P (2018) Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 14:452–463. https://doi.org/10.1038/s41574-018-0037-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jia W, Xie G, Jia W (2018) Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128. https://doi.org/10.1038/nrgastro.2017.119

    Article  CAS  PubMed  Google Scholar 

  55. Alnouti Y (2009) Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 108:225–246. https://doi.org/10.1093/toxsci/kfn268

    Article  CAS  PubMed  Google Scholar 

  56. Gérard P (2013) Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3:14–24. https://doi.org/10.3390/pathogens3010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Woting A, Blaut M (2016) The intestinal microbiota in metabolic disease. Nutrients. https://doi.org/10.3390/nu8040202

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chang NW, Huang PC (1998) Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 33:481–487. https://doi.org/10.1007/s11745-998-0231-9

    Article  CAS  PubMed  Google Scholar 

  59. Hayes KC (2002) Dietary fat and heart health: in search of the ideal fat. Asia Pac J Clin Nutr 11:S394–S400. https://doi.org/10.1046/j.1440-6047.11.s.7.13.x

    Article  CAS  PubMed  Google Scholar 

  60. Mani V, Hollis JH, Gabler NK (2013) Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr Metab 10:6. https://doi.org/10.1186/1743-7075-10-6

    Article  CAS  Google Scholar 

  61. Haro C, Garcia-Carpintero S, Alcala-Diaz JF et al (2016) The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem 27:27–31. https://doi.org/10.1016/j.jnutbio.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  62. Li H, Zhu Y, Zhao F et al (2017) Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep 7:826. https://doi.org/10.1038/s41598-017-00969-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyamoto J, Igarashi M, Watanabe K et al (2019) Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun 10:4007. https://doi.org/10.1038/s41467-019-11978-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tindall AM, McLimans CJ, Petersen KS et al (2020) Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr 150:806–817. https://doi.org/10.1093/jn/nxz289

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with regards to the content of this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwek, E., Zhu, H., Ding, H. et al. Peony seed oil decreases plasma cholesterol and favorably modulates gut microbiota in hypercholesterolemic hamsters. Eur J Nutr 61, 2341–2356 (2022). https://doi.org/10.1007/s00394-021-02785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02785-9

Keywords

Navigation