Skip to main content

Advertisement

Log in

Multi-omics integration reveals the hepatoprotective mechanisms of ursolic acid intake against chronic alcohol consumption

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Alcoholic liver disease (ALD) is a major health issue globally. In addition to pharmacotherapy, dietary support is also regarded as reliable strategy for ALD management. As a widely distributed natural constituent within edible plants, the present study aims to investigate the hepatoprotective effects of ursolic acid (UA) against ALD and also to deepen insights into the underlying targets and mechanisms comprehensively.

Methods

The hepatoprotective activity of UA against chronic alcohol-induced liver injury was investigated on Lieber–DeCarli liquid diet-based mouse model. In-depth RNA-seq transcriptomics and TMT-based proteomics analyses were conducted in parallel. Data integration as well as bioinformatics analysis were also performed to unravel the targets and mechanisms associated with the hepatoprotective activity of UA intake against alcoholic liver injury comprehensively.

Results

The serum biomarkers and pathological characteristics indicated the hepatoprotective effects of UA intake on alcoholic liver injury. 567 target genes and 377 target proteins related to the hepatoprotective activity of UA were identified in transcriptomics and proteomics analysis respectively, most of which were associated with function of cellular process, cell part and binding. After data integration, 56 co-regulated targets, including ADH4, CYP450 enzymes, NQO1, apolipoproteins, glutathione–S–transferase, etc. which were consistently modulated on both mRNA and protein levels were identified. These co-regulated targets were found to be correlated with 70 KEGG pathways led by carcinogenesis, retinol metabolism and CYP450 metabolism pathways.

Conclusion

UA intake ameliorated chronic alcohol-induced liver injury. Given the role of the co-regulated targets in ALD and the bioinformatics analysis results, CYP450-, glutathione and redox homeostasis-dependent antioxidation, promotion of lipid transport, and restoration of ethanol metabolic capacity are the potentially underlying mechanisms. This information will further deepen our insights into the hepatoprotective effects of UA-rich edible plants, and provide us valuable instruction for ALD management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALD:

Alcoholic liver disease

UA:

Ursolic acid

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

TG:

Triacylglycerol

TC:

Total cholesterol

TMT:

Transcriptomics and tandem mass tags

RSEM:

RNA-seq by expectation maximization

DEGs:

Differential expression genes

FPKM:

Fragments per kilobase of exon per million mapped reads

Edge R:

Empirical analysis of digital gene expression in R

UPLC:

Ultra performance liquid chromatographer

DEPs:

Differentially expressed proteins

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

PPI:

Protein–protein interaction

NQO1:

NAD(P)H dehydrogenase quinone 1

GSTA2:

Glutathione S-transferase alpha 2

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

OS:

Organismal systems

CP:

Cellular processes

M:

Metabolism

HD:

Human diseases

EIP:

Environmental information processing

CYP450:

Cytochrome P450

GST:

Glutathione S-transferase

ROS:

Reactive oxygen species

ADH:

Alcohol dehydrogenase

RNS:

Reactive nitrogen species

References

  1. Waszkiewicz N, Galinska-Skok B, Nestsiarovich A et al (2018) Neurobiological effects of binge drinking help in its detection and differential diagnosis from alcohol dependence. Dis Markers 2018:5623683. https://doi.org/10.1155/2018/5623683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Enoch MA, Albaugh BJ (2017) Review: genetic and environmental risk factors for alcohol use disorders in American Indians and Alaskan Natives. Am J Addict 26(5):461–468. https://doi.org/10.1111/ajad.12420

    Article  PubMed  Google Scholar 

  3. De Visser RO, Wheeler Z, Abraham C et al (2013) ‘Drinking is our modern way of bonding’: young people’s beliefs about interventions to encourage moderate drinking. Psychol Health 28(12):1460–1480. https://doi.org/10.1080/08870446.2013.828293

    Article  PubMed  Google Scholar 

  4. Axley PD, Richardson CT, Singal AK (2019) Epidemiology of alcohol consumption and societal burden of alcoholism and alcoholic liver disease. Clin Liver Dis 23(1):39–50. https://doi.org/10.1016/j.cld.2018.09.011

    Article  PubMed  Google Scholar 

  5. Crawford JM (2012) Histologic findings in alcoholic liver disease. Clin Liver Dis 16(4):699–716. https://doi.org/10.1016/j.cld.2012.08.004

    Article  PubMed  Google Scholar 

  6. Xia Y, Zhang S, Zhang Q et al (2020) Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: a large population-based cross-sectional study. Nutr Metab 17:4. https://doi.org/10.1186/s12986-019-0420-1

    Article  CAS  Google Scholar 

  7. Han Y, Glueck B, Shapiro D et al (2020) Dietary synbiotic supplementation protects barrier integrity of hepatocytes and liver sinusoidal endothelium in a mouse model of chronic-binge ethanol exposure. Nutrients 12(2):373. https://doi.org/10.3390/nu12020373

    Article  CAS  PubMed Central  Google Scholar 

  8. Caligiani A, Malavasi G, Palla G et al (2013) A simple GC-MS method for the screening of betulinic, corosolic, maslinic, oleanolic and ursolic acid contents in commercial botanicals used as food supplement ingredients. Food Chem 136(2):735–741. https://doi.org/10.1016/j.foodchem.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Hortas L, Perez-Larran P, Gonzalez-Munoz MJ et al (2018) Recent developments on the extraction and application of ursolic acid. A review. Food Res Int 103:130–149. https://doi.org/10.1016/j.foodres.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  10. Wozniak L, Skapska S, Marszalek K (2015) Ursolic acid-A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 20(11):20614–20641. https://doi.org/10.3390/molecules201119721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin YN, Wang CCN, Chang HY et al (2018) Ursolic acid, a novel liver X receptor α (LXRα) antagonist inhibiting ligand-induced nonalcoholic fatty liver and drug-induced lipogenesis. J Agric Food Chem 66(44):11647–11662. https://doi.org/10.1021/acs.jafc.8b04116

    Article  CAS  PubMed  Google Scholar 

  12. Ma JQ, Ding J, Zhang L et al (2014) Ursolic acid protects mouse liver against CCl4-induced oxidative stress and inflammation by the MAPK/NF-κB pathway. Environ Toxicol Pharmacol 37(3):975–983. https://doi.org/10.1016/j.etap.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Li D, Ren D, Luo Y et al (2016) Protective effects of ursolic acid against hepatotoxicity and endothelial dysfunction in mice with chronic high choline diet consumption. Chem Biol Interact 258:102–107. https://doi.org/10.1016/j.cbi.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  14. Saraswat B, Visen PKS, Agarwal DP (2000) Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes. Phytother Res 14(3):163–166. https://doi.org/10.1002/(sici)1099-1573(200005)14:3%3c163:aid-ptr588%3e3.0.co;2-d

    Article  CAS  PubMed  Google Scholar 

  15. Saravanan R, Viswanathan P, Pugalendi KV (2006) Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci 78(7):713–718. https://doi.org/10.1016/j.lfs.2005.05.060

    Article  CAS  PubMed  Google Scholar 

  16. Ainiwaer T, Refuhati, et al (2019) Multiomics analysis profile acute liver injury module clusters to compare the therapeutic efficacy of bifendate and muaddil sapra. Sci Rep 9(1):4335. https://doi.org/10.1038/s41598-019-40356-5

    Article  CAS  Google Scholar 

  17. Barnett MPG, Cooney JM, Dommels YEM et al (2013) Modulation of colonic inflammation in Mdr1a (-/-) mice by green tea polyphenols and their effects on the colon transcriptome and proteome. J Nutr Biochem 24(10):1678–1690. https://doi.org/10.1016/j.jnutbio.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Liu Q, Zhang B (2014) Leveraging the complementary nature of RNA-Seq and shotgun proteomics data. Proteomics 14(23–24):2676–2687. https://doi.org/10.1002/pmic.201400184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lieber CS, DeCarli LM, Sorrell MF (1989) Experimental methods of ethanol administration. Hepatology 10(4):501–510. https://doi.org/10.1002/hep.1840100417

    Article  CAS  PubMed  Google Scholar 

  20. Lamas-Paz A, Hao F, Nelson LJ et al (2018) (2018) Alcoholic liver disease: utility of animal models. World J Gastroenterol 24(45):5063–5075. https://doi.org/10.3748/wjg.v24.i45.5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Zhu Q, Zhang R et al (2017) ITRAQ-based proteomics analysis of acute lung injury induced by oleic acid in mice. Cell Physiol Biochem 44(5):1949–1964. https://doi.org/10.1159/000485885

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3):535–550. https://doi.org/10.1016/j.cell.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  23. Staats S, Wagner AE, Lüersen K et al (2019) Dietary ursolic acid improves health span and life span in male drosophila melanogaster. BioFactors 45(2):169–186. https://doi.org/10.1002/biof.1467

    Article  CAS  PubMed  Google Scholar 

  24. Kwon EY, Shin SK, Choi MS (2018) Ursolic acid attenuates hepatic steatosis, fibrosis, and insulin resistance by modulating the circadian rhythm pathway in diet-induced obese mice. Nutrients 10(11):1719. https://doi.org/10.3390/nu10111719

    Article  CAS  PubMed Central  Google Scholar 

  25. Gong P, Cederbaum AI, Nieto N (2003) Increased expression of cytochrome P450 2E1 induces heme oxygenase-1 through ERK MAPK pathway. J Biol Chem 278(32):29693–29700. https://doi.org/10.1074/jbc.M304728200

    Article  CAS  PubMed  Google Scholar 

  26. Gupta S, Pandey R, Katyal R et al (2005) Lipid peroxide levels and antioxidant status in alcoholic liver disease. Indian J Clin Biochem 20(1):67–71. https://doi.org/10.1007/BF02893045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Owuor ED, Kong AN (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64(5–6):765–770. https://doi.org/10.1016/s0006-2952(02)01137-1

    Article  CAS  PubMed  Google Scholar 

  28. Yeligar SM, Machida K, Kalra VK (2010) Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1alpha and Nrf2 to attenuate inflammatory cytokine expression. J Biol Chem 285(46):35359–35373. https://doi.org/10.1074/jbc.M110.138636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rushmore TH, Pickett CB (1993) Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem 268(16):11475–11478. https://doi.org/10.1016/0005-2736(93)90149-T

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Schenker S, Henderson GI (2002) 4-Hydroxynonenal detoxification by mitochondrial glutathione S-transferase is compromised by short-term ethanol consumption in rats. Alcohol Clin Exp Res 26(8):1252–1258. https://doi.org/10.1111/j.1530-0277.2002.tb02664.x

    Article  CAS  PubMed  Google Scholar 

  31. Probyn ME, Zanini S, Ward LC et al (2012) A rodent model of low- to moderate-dose ethanol consumption during pregnancy: patterns of ethanol consumption and effects on fetal and offspring growth. Reprod Fertil Dev 24(6):859. https://doi.org/10.1071/RD11200

    Article  CAS  PubMed  Google Scholar 

  32. Nuutinen H, Lindros KO, Salaspuro M (1983) Determinants of blood acetaldehyde level during ethanol oxidation in chronic alcoholics. Alcohol Clin Exp Res 7(2):163–168. https://doi.org/10.1111/j.1530-0277.1983.tb05432.x

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan MP, Bhopale KK, Amer SM et al (2019) Linking dysregulated AMPK signaling and ER stress in ethanol-induced liver injury in hepatic alcohol dehydrogenase deficient deer mice. Biomolecules 9(10):560. https://doi.org/10.3390/biom9100560

    Article  CAS  PubMed Central  Google Scholar 

  34. Getz GS, Reardon CA (2009) Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 50(Suppl):S156–S161. https://doi.org/10.1194/jlr.R800058-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong M, Castillo L, Redman RS et al (2008) Down-regulation of liver Galbeta 1, 4GlcNAc alpha2, 6-sialyltransferase gene by ethanol significantly correlates with alcoholic steatosis in humans. Metabolism 57(12):1663–1668. https://doi.org/10.1016/j.metabol.2008.07.021

    Article  CAS  PubMed  Google Scholar 

  36. Tahara M, Matsumoto K, Nukiwa T et al (1999) Hepatocyte growth factor leads to recovery from alcohol-induced fatty liver in rats. J Clin Invest 103(3):313–320. https://doi.org/10.1172/JCI4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomita K, Azuma T, Kitamura N et al (2004) Pioglitazone prevents alcohol-induced fatty liver in rats through up-regulation of c-Met. Gastroenterology 126(3):873–885. https://doi.org/10.1053/j.gastro.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  38. Teschke R (2018) Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 6(4):106. https://doi.org/10.3390/biomedicines6040106

    Article  CAS  PubMed Central  Google Scholar 

  39. Lu Y, Zhuge J, Wu D et al (2011) Ethanol induction of CYP2A5: permissive role for CYP2E1. Drug Metab Dispos 39(2):330. https://doi.org/10.1124/dmd.110.035691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Cederbaum AI (2015) Cytochrome P450s and alcoholic liver disease. Curr Pharm Des 24(14):1502–1517. https://doi.org/10.2174/1381612824666180410091511

    Article  CAS  Google Scholar 

  41. de Waziers I, Bouguet J, Beaune PH et al (1992) Effects of ethanol, dexamethasone and RU 486 on expression of cytochromes P450 2B, 2E, 3A and glutathione transferase pi in a rat hepatoma cell line (Fao). Pharmacogenetics 2(1):12–18. https://doi.org/10.1097/00008571-199202000-00003

    Article  PubMed  Google Scholar 

  42. Derikvandy A, Pourkhabbaz HR, Banaee M et al (2020) Genotoxicity and oxidative damage in zebrafish (Danio rerio) after exposure to effluent from ethyl alcohol industry. Chemosphere 251:126609. https://doi.org/10.1016/j.chemosphere.2020.126609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (No. 81760769), the Ningxia Hui Autonomous Region key research and development program (2020BFG03007), and the Fundamental Research Funds for the Central Universities (2018-JYBZZ-JS017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaimei She.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2528 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Liu, X., Wang, Y. et al. Multi-omics integration reveals the hepatoprotective mechanisms of ursolic acid intake against chronic alcohol consumption. Eur J Nutr 61, 115–126 (2022). https://doi.org/10.1007/s00394-021-02632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02632-x

Keywords

Navigation